• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65879

    Título
    Linear and nonlinear analysis of airflow recordings to help in sleep apnoea–hypopnoea syndrome diagnosis
    Autor
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Marcos Martín, José Víctor
    Campo Matias, Félix delAutoridad UVA Orcid
    Año del Documento
    2012
    Editorial
    IOP
    Descripción
    Producción Científica
    Documento Fuente
    Physiological Measurement, Julio, 2012, vol. 33, n 7, pp. 1261-1275
    Abstract
    This paper focuses on the analysis of single-channel airflow (AF) signal to help in sleep apnoea–hypopnoea syndrome (SAHS) diagnosis. The respiratory rate variability (RRV) series is derived from AF by measuring time between consecutive breathings. A set of statistical, spectral and nonlinear features are extracted from both signals. Then, the forward stepwise logistic regression (FSLR) procedure is used in order to perform feature selection and classification. Three logistic regression (LR) models are obtained by applying FSLR to features from AF, RRV and both signals simultaneously. The diagnostic performance of single features and LR models is assessed and compared in terms of sensitivity, specificity, accuracy and area under the receiver-operating characteristics curve (AROC). The highest accuracy (82.43%) and AROC (0.903) are reached by the LR model derived from the combination of AF and RRV features. This result suggests that AF and RRV provide useful information to detect SAHS.
    ISSN
    0967-3334
    Revisión por pares
    SI
    DOI
    10.1088/0967-3334/33/7/1261
    Patrocinador
    This work has been partially supported by the project VA111A11-2 from Consejería de Educación de la Junta de Castilla y León, by the Proyectos Cero on Ageing from Fundación General CSIC, by Consejería de Educación de la Junta de Castilla y León (Orden EDU/1204/2010) and by the European Social Found
    Version del Editor
    https://iopscience.iop.org/
    Propietario de los Derechos
    IOP
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65879
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [36]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Gutierrez-Tobal_2012_accepted_version.pdf
    Tamaño:
    813.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10