• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66007

    Título
    Photovoltaic Cells Defects Classification by Means of Artificial Intelligence and Electroluminescence Images
    Autor
    Mateo Romero, Héctor FelipeAutoridad UVA Orcid
    Pérez Romero, Álvaro
    Hernández Callejo, LuisAutoridad UVA Orcid
    Gallardo Saavedra, SaraAutoridad UVA Orcid
    Alonso Gómez, VíctorAutoridad UVA Orcid
    Morales Aragones, José IgnacioAutoridad UVA Orcid
    Plaza, Alberto Redondo
    Fernández Martínez, Diego
    Año del Documento
    2022
    Documento Fuente
    Mateo-Romero, H.F. et al. (2022). Photovoltaic Cells Defects Classification by Means of Artificial Intelligence and Electroluminescence Images. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-Cities 2021. Communications in Computer and Information Science, vol 1555. Springer, Cham. https://doi.org/10.1007/978-3-030-96753-6_3
    Résumé
    More than half of the total renewable addictions correspond to solar photovoltaic (PV) energy. In a context with such an important impact of this resource, being able to produce reliable and safety energy is extremely important and operation and maintenance (O&M) of PV sites must be increasingly intelligent and advanced. The use of Artificial Intelligence (AI) for the defects identification, location and classification is very interesting, as PV plants are increasing in size and quantity. Inspection techniques in PV systems are diverse, and within them, electroluminescence (EL) inspection and current-voltage (I-V) curves are one of the most important. In this sense, this work presents a classifier of defects at the PV cell level, based on AI, EL images and cell I-V curves. To achieve this, it has been necessary to develop an instrument to measure the I-V curve at the cell level, used to label each of the PV cells. In order to determine the classification of cell defects, CNNs will be used. Results obtained have been satisfactory, and improvement is expected from a greater number of samples taken.
    ISSN
    1865-0929
    Revisión por pares
    SI
    DOI
    10.1007/978-3-030-96753-6_3
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/66007
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP32 - Artículos de revista [284]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Clasificador_EL_expandido.pdf
    Tamaño:
    859.7Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10