Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66163
Título
Prediction of the Sleep Apnea Severity Using 2D-Convolutional Neural Networks and Respiratory Effort Signals
Autor
Año del Documento
2023
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Diagnostics 2023, 13(20), 3187
Resumo
The high prevalence of sleep apnea and the limitations of polysomnography have prompted the investigation of strategies aimed at automated diagnosis using a restricted number of physiological measures. This study aimed to demonstrate that thoracic (THO) and abdominal (ABD) movement signals are useful for accurately estimating the severity of sleep apnea, even if central respiratory events are present. Thus, we developed 2D-convolutional neural networks (CNNs) jointly using THO and ABD to automatically estimate sleep apnea severity and evaluate the central event contribution. Our proposal achieved an intraclass correlation coefficient (ICC)=0.75 and a root mean square error (RMSE)=10.33 events/h when estimating the apnea-hypopnea index, and ICC=0.83 and RMSE=0.95 events/h when estimating the central apnea index. The CNN obtained accuracies of 94.98%, 79.82%, and 81.60% for 5, 15, and 30 events/h when evaluating the complete apnea hypopnea index. The model improved when the nature of the events was central: 98.72% and 99.74% accuracy for 5 and 15 events/h. Hence, the information extracted from these signals using CNNs could be a powerful tool to diagnose sleep apnea, especially in subjects with a high density of central apnea events.
Palabras Clave
central sleep apnea
obstructive sleep apnea
abdominal respiratory signal
thoracic respiratory signal
convolutional neural network
deep learning
ISSN
2075-4418
Revisión por pares
SI
Patrocinador
National Heart, Lung, and Blood Institute cooperative agreements U01HL53916 (University of California, Davis), U01HL53931 (New York University), U01HL53934 (University of Minnesota), U01HL53937 and U01HL64360 (Johns Hopkins University), U01HL53938 (University of Arizona), U01HL53940 (University of Washington), U01HL53941 (Boston University), and U01HL63463 (Case Western Reserve University). The National Sleep Research Resource was supported by the National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002)
Version del Editor
Idioma
spa
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Atribución-NoComercial-CompartirIgual 4.0 Internacional