• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Grupo de Caracterización de Materiales y Dispositivos Electrónicos (GCME)
    • GCME - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Grupo de Caracterización de Materiales y Dispositivos Electrónicos (GCME)
    • GCME - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66171

    Título
    The asset administration shell as enabler for predictive maintenance: a review
    Autor
    Rodríguez Rahal, Jhonny
    Schwarz, Alexander
    Sahelices Fernández, BenjamínAutoridad UVA Orcid
    Weis, Ronny
    Duque Antón, Simón
    Año del Documento
    2023
    Editorial
    SPRINGER LINK
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Intelligent Manufacturing
    Abstract
    The emergence of the Internet of Things and the interconnection of systems and machines enables the idea of Industry 4.0, a new industrial paradigm with a strong focus on interaction and communication between physical and digital entities, leading to the creation of cyber-physical systems. The digital twin and the standard for the Asset Administration Shell are concepts derived from Industry 4.0 that exploit the advantages of connecting the physical and virtual domains, improving the management and display of the collected data. Furthermore, the increasing availability of data has enabled the implementation of data-driven approaches, such as machine and deep learning models, for predictive maintenance in industrial and automotive applications. This paper provides a two-dimensional review of the Asset Administration Shell and data-driven methods for predictive maintenance, including fault diagnosis and prognostics. Additionally, a digital twin architecture combining the Asset Administration Shell, predictive maintenance and data-driven methods is proposed within the context of the WaVe project.
    Palabras Clave
    Asset administration shell
    Predictive maintenance
    Digital twin
    Machine learning
    Industry 4.0
    WaVe
    ISSN
    0956-5515
    Revisión por pares
    SI
    DOI
    10.1007/s10845-023-02236-8
    Patrocinador
    CRUE-CSIC agreement with Springer Nature
    Version del Editor
    https://link.springer.com/article/10.1007/s10845-023-02236-8#Abs1
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/66171
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • GCME - Artículos de revista [57]
    Show full item record
    Files in this item
    Nombre:
    s10845-023-02236-8.pdf
    Tamaño:
    848.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución-NoComercial-CompartirIgual 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10