Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66171
Título
The asset administration shell as enabler for predictive maintenance: a review
Año del Documento
2023
Editorial
SPRINGER LINK
Descripción
Producción Científica
Documento Fuente
Journal of Intelligent Manufacturing
Résumé
The emergence of the Internet of Things and the interconnection of systems and machines enables the idea of Industry 4.0, a new industrial paradigm with a strong focus on interaction and communication between physical and digital entities, leading to the creation of cyber-physical systems. The digital twin and the standard for the Asset Administration Shell are concepts derived from Industry 4.0 that exploit the advantages of connecting the physical and virtual domains, improving the management and display of the collected data. Furthermore, the increasing availability of data has enabled the implementation of data-driven approaches, such as machine and deep learning models, for predictive maintenance in industrial and automotive applications. This paper provides a two-dimensional review of the Asset Administration Shell and data-driven methods for predictive maintenance, including fault diagnosis and prognostics. Additionally, a digital twin architecture combining the Asset Administration Shell, predictive maintenance and data-driven methods is proposed within the context of the WaVe project.
Palabras Clave
Asset administration shell
Predictive maintenance
Digital twin
Machine learning
Industry 4.0
WaVe
ISSN
0956-5515
Revisión por pares
SI
Patrocinador
CRUE-CSIC agreement with Springer Nature
Version del Editor
Idioma
spa
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-CompartirIgual 4.0 Internacional