Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66183
Título
Clifford elements in Lie algebras
Año del Documento
2017
Editorial
Heldermann Verlag
Descripción
Producción Científica
Documento Fuente
Journal of Lie Theory, 2017, vol. 27, no. 1, p. 283-296
Abstract
Let L be a Lie algebra over a field F of characteristic zero or p > 3 . An element c ∈ L is called Clifford if adc^3 = 0 and its associated Jordan algebra Lc is the Jordan algebra F ⊕ X defined by a symmetric bilinear form on a vector space X over F . In this paper we prove the following result: Let R be a centrally closed prime ring R of characteristic zero or p > 3 with involution ∗ and let c ∈ Skew(R, ∗) be such that c^3 = 0 , c^2 != 0 and c^2kc = ckc^2 for all k ∈ Skew(R, ∗) . Then c is a Clifford element of the Lie algebra Skew(R, ∗) .
Materias (normalizadas)
Matemáticas
Materias Unesco
1201.05 Campos, Anillos, Álgebras
1201.09 Álgebra de Lie
1201.12 Álgebras no Asociativas
Palabras Clave
Anillos primos, Anillos con involución, Álgebras de Lie, elementos Jordan
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
Copyright Heldermann Verlag 2017
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Collections
Files in this item
Tamaño:
185.6Kb
Formato:
Adobe PDF