Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66227
Título
The Newton Polygon Method for Differential Equations
Autor
Año del Documento
2005
Editorial
Springer Verlag
Descripción
Producción Científica
Documento Fuente
Cano, J. (2005). The Newton Polygon Method for Differential Equations. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_3
Resumo
We prove that a first order ordinary differential equation
(ODE) with a dicritical singularity at the origin has a one-parameter
family of convergent fractional power series solutions. The notion of a
dicritical singularity is extended from the class of first order and first
degree ODE’s to the class of first order ODE’s. An analogous result for
series with real exponents is given.
The main tool used in this paper is the Newton polygon method
for ODE. We give a description of this method and some elementary
applications such as an algorithm for finding polynomial solutions.
Materias (normalizadas)
Matemáticas
Materias Unesco
1201 Álgebra
1204 Geometría
Palabras Clave
Newton polygon method
Formal power series
Ordinary differential equations
ISSN
0302-9743
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia y Tecnología Proyecto BFM2001-2010
Version del Editor
Propietario de los Derechos
Springer-Verlag
Idioma
spa
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Arquivos deste item