• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Bioquímica y Biología Molecular y Fisiología
    • DEP06 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Bioquímica y Biología Molecular y Fisiología
    • DEP06 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66270

    Título
    Multiomics insights on the onset, progression, and metastatic evolution of breast cancer
    Autor
    Álvarez Frutos, LuciaAutoridad UVA Orcid
    Barriuso Palacios, DanielAutoridad UVA Orcid
    Duran Dominguez, María MercedesAutoridad UVA Orcid
    Infante Sanz, María Del MarAutoridad UVA Orcid
    Kroemer, Guido
    Palacios Ramírez, RobertoAutoridad UVA Orcid
    Senovilla González, LauraAutoridad UVA Orcid
    Año del Documento
    2023-12-19
    Editorial
    Frontiers
    Descripción
    Producción Científica
    Documento Fuente
    Front Oncol. 2023 Dec 19:13:1292046
    Resumo
    Breast cancer is the most common malignant neoplasm in women. Despite progress to date, 700,000 women worldwide died of this disease in 2020. Apparently, the prognostic markers currently used in the clinic are not sufficient to determine the most appropriate treatment. For this reason, great efforts have been made in recent years to identify new molecular biomarkers that will allow more precise and personalized therapeutic decisions in both primary and recurrent breast cancers. These molecular biomarkers include genetic and post-transcriptional alterations, changes in protein expression, as well as metabolic, immunological or microbial changes identified by multiple omics technologies (e.g., genomics, epigenomics, transcriptomics, proteomics, glycomics, metabolomics, lipidomics, immunomics and microbiomics). This review summarizes studies based on omics analysis that have identified new biomarkers for diagnosis, patient stratification, differentiation between stages of tumor development (initiation, progression, and metastasis/recurrence), and their relevance for treatment selection. Furthermore, this review highlights the importance of clinical trials based on multiomics studies and the need to advance in this direction in order to establish personalized therapies and prolong disease-free survival of these patients in the future.
    Palabras Clave
    biomarkers; breast cancer; cancer progression; early-stage; metastasis; omics.
    ISSN
    2234-943X
    Revisión por pares
    SI
    DOI
    10.3389/fonc.2023.1292046
    Version del Editor
    https://doi.org/10.3389/fonc.2023.1292046
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/66270
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP06 - Artículos de revista [352]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    fonc-13-1292046.pdf
    Tamaño:
    2.930Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10