Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66375
Título
Gender stereotypes in AI-generated images
Otros títulos
Estereotipos de género en imágenes generadas mediante inteligencia artificial
Año del Documento
2023
Editorial
EPI SL
Documento Fuente
Profesional De La información Information Professional, 32(5).
Abstract
This study explores workplace gender bias in images generated by DALL-E 2, an application for synthesising images based on artificial intelligence (AI). To do this, we used a stratified probability sampling method, dividing the sample into segments on the basis of 37 different professions or prompts, replicating the study by Farago, Eggum-Wilkens and Zhang (2020) on gender stereotypes in the workplace. The study involves two coders who manually input different professions into the image generator. DALL-E 2 generated 9 images for each query, and a sample of 666 images was collected, with a confidence level of 99% and a margin of error of 5%. Each image was subsequently evaluated using a 3-point Likert scale: 1, not stereotypical; 2, moderately stereotypical; and 3, strongly stereotypical. Our study found that the images generated replicate gender stereotypes in the workplace. The findings presented indicate that 21.6% of AI-generated images depicting professionals exhibit full stereotypes of women, while 37.8% depict full stereotypes of men. While previous studies conducted with humans found that gender stereotypes in the workplace exist, our research shows that AI not only replicates this stereotyping, but reinforces and increases it. Consequently, while human research on gender bias indicates strong stereotyping in 35% of instances, AI exhibits strong stereotyping in 59.4% of cases. The results of this study emphasise the need for a diverse and inclusive AI development community to serve as the basis for a fairer and less biased AI.
Materias (normalizadas)
Inteligencia artificial
Estereotipos de género
DALL-E
Diferencias de género
Materias Unesco
1203.04 Inteligencia Artificial
5206.09 Sexo
Palabras Clave
Artificial intelligence
Open AI
Synthetic images
Gender stereotypes
Sex biases
Professions
ISSN
1699-2407
Revisión por pares
SI
Patrocinador
Poyecto “Flujos de desinformación, polarización y crisis de la intermediación mediática (Disflows) (PID2020-113574RB-I00)”, financiado por el Ministerio de Ciencia e Innovación de España.
Propietario de los Derechos
© Los autores
Idioma
spa
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Tamaño:
2.943Mb
Formato:
Adobe PDF
Descripción:
Gender stereotypes in AI-generated images
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional