• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/66511

    Título
    FMDNet: An efficient system for face mask detection based on lightweight model during COVID-19 pandemic in public areas
    Autor
    Benifa, J. V. Bibal
    Chola, Channabasava
    Muaad, Abdullah Y.
    Hayat, Mohd Ammar Bin
    Bin Heyat, Md Belal
    Mehrotra, Rajat
    Akhtar, Faijan
    Hussein, Hany S.
    Ramírez Vargas, Debora Libertad
    Kuc Castilla, Ángel
    Torre Díez, Isabel de laAutoridad UVA
    Khan, Salabat
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, 2023, Vol. 23, Nº. 13, 6090
    Resumo
    A new artificial intelligence-based approach is proposed by developing a deep learning (DL) model for identifying the people who violate the face mask protocol in public places. To achieve this goal, a private dataset was created, including different face images with and without masks. The proposed model was trained to detect face masks from real-time surveillance videos. The proposed face mask detection (FMDNet) model achieved a promising detection of 99.0% in terms of accuracy for identifying violations (no face mask) in public places. The model presented a better detection capability compared to other recent DL models such as FSA-Net, MobileNet V2, and ResNet by 24.03%, 5.0%, and 24.10%, respectively. Meanwhile, the model is lightweight and had a confidence score of 99.0% in a resource-constrained environment. The model can perform the detection task in real-time environments at 41.72 frames per second (FPS). Thus, the developed model can be applicable and useful for governments to maintain the rules of the SOP protocol.
    Materias (normalizadas)
    Artificial intelligence
    COVID-19
    Machine learning
    Aprendizaje automático
    Masks
    Mascarillas
    Pandemics
    Pandemias
    SARS-CoV-2
    Electronic surveillance
    Vigilancia electrónica
    Public health
    Medicine
    Public health
    Electronic data processing
    Procesamiento de datos
    Materias Unesco
    1203.04 Inteligencia Artificial
    32 Ciencias Médicas
    3212 Salud Publica
    ISSN
    1424-8220
    Revisión por pares
    SI
    DOI
    10.3390/s23136090
    Patrocinador
    Universidad King Khalid - (Project RGP.2/162/44)
    Version del Editor
    https://www.mdpi.com/1424-8220/23/13/6090
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/66511
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    FMDNet.pdf
    Tamaño:
    2.165Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10