Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67046
Título
Incorporating meteorological data and pesticide information to forecast crop yields using machine learning
Autor
Año del Documento
2024
Editorial
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC.
Descripción
Producción Científica
Documento Fuente
IEEE Access, Marzo 2024, vol. 12, p. 47768-47786.
Abstract
The agricultural sector is more vulnerable to the adverse effects of climate change and excessive pesticide application, posing a significant risk to global food security. Accurately predicting crop yields is essential for mitigating these risks and providing information for sustainable agricultural practices. This research presents a novel crop yield prediction system utilizing a year’s worth of meteorological data, pesticide records, crop yield data, and machine learning techniques. We employed rigorous methods to gather, clean, and enhance data and then trained and evaluated three machine learning models: Gradient Boosting, K-Nearest Neighbors, and Multivariate Logistic Regression. We utilized the GridSearchCV method for hyper-parameter tweaking to identify the most suitable hyper-parameter throughout K-Fold cross-validation, aiming to improve the model’s performance by avoiding overfitting. The remarkable performance of the Gradient Boosting model, with an almost flawless coefficient of determination (R2) of 99.99%, demonstrates its promise for precise yield prediction. This research also examined the correlation between projected and actual crop yields and identified the ideal meteorological conditions. It paves the way for data-driven methods in sustainable agriculture and resource distribution, ultimately leading to a more secure future regarding food availability and robustness to climate change.
Materias (normalizadas)
Deep learning models
Palabras Clave
Agriculture
Crop yield prediction
Machine Learning
Deep learning
ISSN
2169-3536
Revisión por pares
SI
Patrocinador
European University of Atlantic
Version del Editor
Propietario de los Derechos
"© Todos los derechos reservados". Propietario de los derechos: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC.
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
Nombre:
Tamaño:
2.145Mb
Formato:
Adobe PDF
Descripción:
Artículo principal
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional