• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67234

    Título
    Prosodic feature analysis for automatic speech assessment and individual report generation in people with Down syndrome
    Autor
    Corrales Astorgano, MarioAutoridad UVA Orcid
    González Ferreras, CésarAutoridad UVA Orcid
    Escudero Mancebo, DavidAutoridad UVA Orcid
    Cardeñoso Payo, ValentínAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Applied Sciences, 2024, Vol. 14, Nº. 1, 293
    Abstract
    Evaluating prosodic quality poses unique challenges due to the intricate nature of prosody, which encompasses multiple form–function profiles. These challenges are more pronounced when analyzing the voices of individuals with Down syndrome (DS) due to increased variability. This paper introduces a procedure for selecting informative prosodic features based on both the disparity between human-rated DS productions and their divergence from the productions of typical users, utilizing a corpus constructed through a video game. Individual reports of five speakers with DS are created by comparing the selected features of each user with recordings of individuals without intellectual disabilities. The acquired features primarily relate to the temporal domain, reducing dependence on pitch detection algorithms, which encounter difficulties when dealing with pathological voices compared to typical ones. These individual reports can be instrumental in identifying specific issues for each speaker, assisting therapists in defining tailored training sessions based on the speaker’s profile.
    Materias (normalizadas)
    Down syndrome
    Down, Síndrome de
    Medical genetics
    Genética
    Prosody
    Prosodia
    Speech processing systems
    Síntesis automática del habla
    Computational linguistics
    Technology
    Science
    Materias Unesco
    57 Lingüística
    5701.04 Lingüística Informatizada
    33 Ciencias Tecnológicas
    ISSN
    2076-3417
    Revisión por pares
    SI
    DOI
    10.3390/app14010293
    Patrocinador
    Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (AEI)/10.13039/501100011033 y Fondo Europeo de Desarrollo Regional (FEDER) - (Project PID2021-126315OB-I00)
    Version del Editor
    https://www.mdpi.com/2076-3417/14/1/293
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/67234
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP41 - Artículos de revista [110]
    Show full item record
    Files in this item
    Nombre:
    Prosodic-Feature-Analysis.pdf
    Tamaño:
    1.536Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10