• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Energía, Economía y Dinámica de Sistemas (GEEDS)
    • GEEDS - Artículos de revistas
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Energía, Economía y Dinámica de Sistemas (GEEDS)
    • GEEDS - Artículos de revistas
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67428

    Título
    M-quantile regression shrinkage and selection via the Lasso and Elastic Net to assess the effect of meteorology and traffic on air quality
    Autor
    Ranalli, M. Giovanna
    Salvati, Nicola
    Petrella, Lea
    Pantalone, Francesco
    Año del Documento
    2024
    Editorial
    Wiley
    Descripción
    Producción Científica
    Documento Fuente
    Biometrical Journal, Septiembre, 2023
    Resumen
    In this work, we intersect data on size-selected particulate matter (PM) with vehicular traffic counts and a comprehensive set of meteorological covariates to study the effect of traffic on air quality. To this end, we develop an M-quantile regression model with Lasso and Elastic Net penalizations. This allows (i) to identify the best proxy for vehicular traffic via model selection, (ii) to investigate the relationship between fine PM concentration and the covariates at different M-quantiles of the conditional response distribution, and (iii) to be robust to the presence of outliers. Heterogeneity in the data is accounted by fitting a Bspline on the effect of the day of the year. Analytic and bootstrap-based variance estimates of the regression coefficients are provided, together with a numerical evaluation of the proposed estimation procedure. Empirical results show that atmospheric stability is responsible for the most significant effect on fine PM concentration: this effect changes at different levels of the conditional response distribution and is relatively weaker on the tails. On the other hand,model selection allows to identify the best proxy for vehicular traffic whose effect remains essentially the same at different levels of the conditional response distribution
    Materias (normalizadas)
    Meteorología
    Contaminación
    Materias Unesco
    2509 Meteorología
    2509.02 Contaminación Atmosférica
    Palabras Clave
    Additive models
    B-splines
    Cross-validation
    Influence function
    Robust regression
    ISSN
    0323-3847
    Revisión por pares
    SI
    DOI
    10.1002/bimj.202100355
    Patrocinador
    The work of Ranalli has been carried out with the support of the project AIDMIX, Fondo di ricerca di Ateneo, edizione 2021, Universita degli Studi di Perugia. The work of Salvati has been carried out with the support of the project InGRID 2 (Grant Agreement N. 730998) and of the project LOCOMOTION (Grant Agreement N. 821105).
    Version del Editor
    https://onlinelibrary.wiley.com/doi/10.1002/bimj.202100355
    Propietario de los Derechos
    © The Authors
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/67428
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GEEDS - Artículos de revistas [45]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Biometrical J - 2023 - Ranalli - M‐quantile regression shrinkage and selection via the Lasso and Elastic Net to assess the.pdf
    Tamaño:
    962.0Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution 4.0 InternacionalLa licencia del ítem se describe como Attribution 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10