• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67786

    Título
    Burn severity analysis in Mediterranean forests using maximum entropy model trained with EO-1 Hyperion and LiDAR data
    Autor
    Fernández Manso, Alfonso
    Quintano Pastor, María del CarmenAutoridad UVA Orcid
    Roberts, Dar
    Año del Documento
    2019
    Editorial
    Elsevier
    Documento Fuente
    ISPRS Journal of Photogrammetry and Remote Sensing, Septiembre 2019, vol. 155, p. 102–118.
    Abstract
    All ecosystems and in particular ecosystems in Mediterranean climates are affected by fires. Knowledge of the drivers that most influence burn severity patterns as well an accurate map of post-fire effects are key tools for forest managers in order to plan an adequate post-fire response. Remote sensing data are becoming an indispensable instrument to reach both objectives. This work explores the relative influence of pre-fire vegetation structure and topography on burn severity compared to the impact of post-fire damage level, and evaluates the utility of the Maximum Entropy (MaxEnt) classifier trained with post-fire EO-1 Hyperion data and pre-fire LiDAR to model three levels of burn severity at high accuracy. We analyzed a large fire in central-eastern Spain, which occurred on 16–19 June 2016 in a maquis shrubland and Pinus halepensis forested area. Post-fire hyperspectral Hyperion data were unmixed using Multiple Endmember Spectral Mixture Analysis (MESMA) and five fraction images were generated: char, green vegetation (GV), non-photosynthetic vegetation, soil (NPVS) and shade. Metrics associated with vegetation structure were calculated from pre-fire LiDAR. Post-fire MESMA char fraction image, pre-fire structural metrics and topographic variables acted as inputs to MaxEnt, which built a model and generated as output a suitability surface for each burn severity level. The percentage of contribution of the different biophysical variables to the MaxEnt model depended on the burn severity level (LiDAR-derived metrics had a greater contribution at the low burn severity level), but MaxEnt identified the char fraction image as the highest contributor to the model for all three burn severity levels. The present study demonstrates the validity of MaxEnt as one-class classifier to model burn severity accurately in Mediterranean countries, when trained with post-fire hyperspectral Hyperion data and pre-fire LiDAR
    Palabras Clave
    Burn severity
    EO-1 Hyperion
    LiDAR
    MaxEnt
    Revisión por pares
    SI
    DOI
    10.1016/j.isprsjprs.2019.07.003
    Patrocinador
    Spanish Ministry of Economy and Competitiveness (FIRESEVES project, AGL2017-86075-C2-1-R)
    Regional Government of Castile and León (SEFIRECYL project, LE001P17)
    Version del Editor
    https://www.sciencedirect.com/science/article/abs/pii/S0924271619301625
    Propietario de los Derechos
    Elseveir
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/67786
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP69 - Artículos de revista [32]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    2019_ISPRS_Burn_severity_analysis_Mediterranean_forests.pdf
    Tamaño:
    3.782Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10