• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67787

    Título
    Enhanced burn severity estimation using fine resolution ET and MESMA fraction images with machine learning algorithm
    Autor
    Quintano Pastor, María del CarmenAutoridad UVA Orcid
    Fernández Manso, Alfonso
    Roberts, Dar
    Año del Documento
    2020
    Editorial
    Elsevier
    Documento Fuente
    Remote Sensing of Environment, Julio 2020, 244, 111815.
    Resumo
    Successful post-fire management depends on accurate burn severity maps that are increasingly derived from satellite data, replacing field-based estimates. Post-fire vegetation and soil changes, besides modifying the reflected and emitted radiation recorded by sensors onboard satellites, strongly alters water balance in the fire affected area. While fire-induced spectral changes can be well represented by fraction images from Multiple Endmember Spectral Mixture Analysis (MESMA), changes in water balance are mainly registered by evapotranspiration (ET). As both types of variables have a clear physical meaning, they can be easily understood in terms of burn severity, providing a clear advantage compared to widely-used spectral indices. In this research work, we evaluate the potential of Landsat-derived ET to estimate burn severity, together with MESMA derived Sentinel-2 fraction images and important environment variables (pre-fire vegetation, climate, topography). In this study, we use the random forest (RF) classifier, which provides information on variable importance allowing us to identify the combination of input variables that provided the most accurate estimate. Our study area is located in Central Portugal, where a mega-fire burned >450 km2 from 17 to 24 June 2017. We used the official burn severity map as ground reference. The RF algorithm identified ET as the most important variable in the burn severity model, followed by MESMA char fractions. When both ET and MESMA char fraction image were used as RF inputs, burn severity estimates reached higher accuracy than if only one of them was used, which suggests their potential synergetic interaction. In particular, when environmental variables were used in addition to ET and char fraction, the highest accuracy for burn severity was reached (κ = 0.79). Our main conclusion is that post-fire fine resolution ET is a useful and easily understandable indicator of burn severity in Mediterranean ecosystems, in particular when used in combination with a MESMA char fraction image. This novel approach to estimate burn severity may help to develop successful post-fire management strategies not only in Mediterranean ecosystems but also in other ecosystems, due to ease of generalization.
    Palabras Clave
    Evapotranspiration
    Energy balance
    MESMA
    Burn severity
    Random forest
    Revisión por pares
    SI
    DOI
    10.1016/j.rse.2020.111815
    Patrocinador
    Spanish Ministry of Economy and Competitiveness (FIRESEVES project, 559 AGL2017-86075-C2-1- R)
    Regional Government of Castile and León (SEFIRECYL project, LE001P17)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0034425720301851
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/67787
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP69 - Artículos de revista [32]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    2020_RSE_Enhanced_burn_severity_estimation.pdf
    Tamaño:
    3.302Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10