Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67809
Título
Comparative study of continuous hourly energy consumption forecasting strategies with small data sets to support demand management decisions in buildings
Autor
Año del Documento
2022
Editorial
Wiley
Descripción
Producción Científica
Documento Fuente
Energy Science & Engineering, december 2022, 10(12), 4694-4707
Resumo
Buildings are one of the largest consumers of electrical energy, making it important to develop different strategies to help to reduce electricity consumption. Building energy consumption forecasting strategies are widely used to support demand management decisions, but these strategies require large data sets to achieve an accurate electric consumption forecast, so they are not commonly used for buildings with a short history of record keeping. Based on this, the objective of this study is to determine, through continuous hourly electricity consumption forecasting strategies, the amount of data needed to achieve an accurate forecast. The proposed forecasting strategies were evaluated with Random Forest, eXtreme Gradient Boost, Convolutional Neural Network, and Temporal Convolutional Network algorithms using 4 years of electricity consumption data from two buildings located on the campus of the University of Valladolid. For performance evaluation, two scenarios were proposed for each of the proposed forecasting strategies. The results showed that for forecasting horizons of 1 week, it was possible to obtain a mean absolute percentage error (MAPE) below 7% for Building 1 and a MAPE below 10% for Building 2 with 6 months of data, while for a forecast horizon of 1 month, it was possible to obtain a MAPE below 10% for Building 1 and below 11% for Building 2 with 10 months of data. However, if the distribution of the data captured in the buildings does not undergo sudden changes, the decision tree algorithms obtain better results. However, if there are sudden changes, deep learning algorithms are a better choice.
Palabras Clave
Building energy consumption
Forecasting
Learning algorithms
Multistep forecasting
Short‐term forecasting
ISSN
2050-0505
Revisión por pares
SI
Patrocinador
CITIES thematic network, a member of the CYTED program. CYTED, grant number: 518RT0558
University of Valladolid and the Instituto Tecnológico de Santo Domingo for their support in this study, which is the result of a co-supervised doctoral thesis
University of Valladolid and the Instituto Tecnológico de Santo Domingo for their support in this study, which is the result of a co-supervised doctoral thesis
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Tamaño:
3.061Mb
Formato:
Adobe PDF
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional