Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67945
Título
Sentence-level classification using parallel fuzzy deep learning classifier
Autor
Año del Documento
2021
Editorial
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC.
Descripción
Producción Científica
Documento Fuente
IEEE Access, Enero 2021, vol. 9, p. 17943-17985.
Zusammenfassung
At present, with the growing number of Web 2.0 platforms such as Instagram, Facebook, and Twitter, users honestly communicate their opinions and ideas about events, services, and products. Owing to this rise in the number of social platforms and their extensive use by people, enormous amounts of data are produced hourly. However, sentiment analysis or opinion mining is considered as a useful tool that aims to extract the emotion and attitude from the user-posted data on social media platforms by using different computational methods to linguistic terms and various Natural Language Processing (NLP). Therefore, enhancing text sentiment classification accuracy has become feasible, and an interesting research area for many community researchers. In this study, a new Fuzzy Deep Learning Classifier (FDLC) is suggested for improving the performance of data-sentiment classification. Our proposed FDLC integrates Convolutional Neural Network (CNN) to build an effective automatic process for extracting the features from collected unstructured data and Feedforward Neural Network (FFNN) to compute both positive and negative sentimental scores. Then, we used the Mamdani Fuzzy System (MFS) as a fuzzy classifier to classify the outcomes of the two used deep (CNN+FFNN) learning models in three classes, which are: Neutral, Negative, and Positive. Also, to prevent the long execution time taking by our hybrid proposed FDLC, we have implemented our proposal under the Hadoop cluster. An experimental comparative study between our FDLC and some other suggestions from the literature is performed to demonstrate our offered classifier’s effectiveness. The empirical result proved that our FDLC performs better than other classifiers in terms of true positive rate, true negative rate, false positive rate, false negative rate, error rate, precision, classification rate, kappa statistic, F1-score and time consumption, complexity, convergence, and stability.
Palabras Clave
Deep learning
Convolutional neural network
Sentiment analysis
ISSN
2169-3536
Revisión por pares
SI
Patrocinador
Este trabajo ha sido financiado por el grupo de investigación eVida, de la Universidad de Deusto, como parte del proyecto de investigación: Grant IT 905-16.
Version del Editor
Propietario de los Derechos
"© Todos los derechos reservados". Propietario de los derechos: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC.
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Tamaño:
3.827Mb
Formato:
Adobe PDF
Descripción:
Artículo principal
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional