Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68064
Título
Development of a detection system for types of weeds in maize (Zea mays L.) under greenhouse conditions using the YOLOv5 v7.0 model
Autor
Año del Documento
2024
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Agriculture, 2024, Vol. 14, Nº. 2, 286
Abstract
Corn (Zea mays L.) is one of the most important cereals worldwide. To maintain crop productivity, it is important to eliminate weeds that compete for nutrients and other resources. The eradication of these causes environmental problems through the use of agrochemicals. The implementation of technology to mitigate this impact is also a challenge. In this work, an artificial vision system was implemented based on the YOLOv5s (You Only Look Once) model, which uses a single convolutional neural network (CNN) that allows differentiating corn from four types of weeds, for which a mobile support structure was built to capture images. The performance of the trained model had a value of mAP@05 (mean Average Precision) at a threshold of 0.5 of 83.6%. A prediction accuracy of 97% and a mAP@05 of 97.5% were obtained for the maize class. For the weed classes, Lolium perenne, Sonchus oleraceus, Solanum nigrum, and Poa annua obtained an accuracy of 86%, 90%, 78%, and 74%, and a mAP@05 of 81.5%, 90.2%, 76.6% and 72.0%, respectively. The results are encouraging for the construction of a precision weeding system.
Materias (normalizadas)
Machine learning
Aprendizaje automático
Precision agriculture
Agricultura de precisión
Sustainable agriculture
Agricultura sostenible
Agricultural innovations
Agricultura - Innovaciones tecnológicas
Neural networks (Computer science)
Redes neuronales (Informática)
Computer vision
Visión artificial (Robótica)
Agriculture
Agricultural engineering
Materias Unesco
3102 Ingeniería Agrícola
1203.04 Inteligencia Artificial
1203.17 Informática
ISSN
2077-0472
Revisión por pares
SI
Patrocinador
Union Europea, European Union’s Horizon 2020 - (grant HORIZON-CL6-2022-FARM2FORK-01)
Version del Editor
Propietario de los Derechos
© 2024 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Related items
Showing items related by title, author, creator and subject.