Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68076
Título
Multi-device parallel MRI reconstruction: Efficient partitioning for undersampled 5D cardiac CINE
Autor
Año del Documento
2024
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, 2024, Vol. 24, Nº. 4, 1313
Abstract
Cardiac CINE, a form of dynamic cardiac MRI, is indispensable in the diagnosis and treatment of heart conditions, offering detailed visualization essential for the early detection of cardiac diseases. As the demand for higher-resolution images increases, so does the volume of data requiring processing, presenting significant computational challenges that can impede the efficiency of diagnostic imaging. Our research presents an approach that takes advantage of the computational power of multiple Graphics Processing Units (GPUs) to address these challenges. GPUs are devices capable of performing large volumes of computations in a short period, and have significantly improved the cardiac MRI reconstruction process, allowing images to be produced faster. The innovation of our work resides in utilizing a multi-device system capable of processing the substantial data volumes demanded by high-resolution, five-dimensional cardiac MRI. This system surpasses the memory capacity limitations of single GPUs by partitioning large datasets into smaller, manageable segments for parallel processing, thereby preserving image integrity and accelerating reconstruction times. Utilizing OpenCL technology, our system offers adaptability and cross-platform functionality, ensuring wider applicability. The proposed multi-device approach offers an advancement in medical imaging, accelerating the reconstruction process and facilitating faster and more effective cardiac health assessment.
Materias (normalizadas)
Cardiology
Magnetic resonance
Resonancia magnética
Cardiac imaging
Heart - Magnetic resonance imaging
Corazón - Enfermedades - Tratamiento
Heart - Diseases - Treatment
Computers
Graphics processing units
Image processing
Imágenes, Tratamiento de las
Compressed sensing (Telecommunication)
Medical technology
Materias Unesco
32 Ciencias Médicas
3205.01 Cardiología
3304 Tecnología de Los Ordenadores
3325 Tecnología de las Telecomunicaciones
3314 Tecnología Médica
ISSN
1424-8220
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Comercio y Empresa (MINECO) - (grants TEC2017-82408-R, PRE2018- 086922)
Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigacion (AEI) - (grants PID2020-115339RB-I00 and TED2021- 130090B-I00 )
Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigacion (AEI) - (grants PID2020-115339RB-I00 and TED2021- 130090B-I00 )
Version del Editor
Propietario de los Derechos
© 2024 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional