• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68101

    Título
    A self-adaptive automatic incident detection system for road surveillance based on deep learning
    Autor
    Bartolomé Hornillos, César
    San José Revuelta, Luis MiguelAutoridad UVA Orcid
    Aguiar Pérez, Javier ManuelAutoridad UVA Orcid
    García Serrada, Carlos
    Vara Pazos, Eduardo
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, 2024, Vol. 24, Nº. 6, 1822
    Zusammenfassung
    We present an automatic road incident detector characterised by a low computational complexity for easy implementation in affordable devices, automatic adaptability to changes in scenery and road conditions, and automatic detection of the most common incidents (vehicles with abnormal speed, pedestrians or objects falling on the road, vehicles stopped on the shoulder, and detection of kamikaze vehicles). To achieve these goals, different tasks have been addressed: lane segmentation, identification of traffic directions, and elimination of unnecessary objects in the foreground. The proposed system has been tested on a collection of videos recorded in real scenarios with real traffic, including areas with different lighting. Self-adaptability (plug and play) to different scenarios has been tested using videos with significant scene changes. The achieved system can process a minimum of 80 video frames within the camera’s field of view, covering a distance of 400 m, all within a span of 12 s. This capability ensures that vehicles travelling at speeds of 120 km/h are seamlessly detected with more than enough margin. Additionally, our analysis has revealed a substantial improvement in incident detection with respect to previous approaches. Specifically, an increase in accuracy of 2–5% in automatic mode and 2–7% in semi-automatic mode. The proposed classifier module only needs 2.3 MBytes of GPU to carry out the inference, thus allowing implementation in low-cost devices.
    Materias (normalizadas)
    Security
    Systems and Data Security
    Artificial intelligence
    Traffic safety
    Seguridad en carretera
    Automobiles - Safety appliances
    Seguridad vial
    Tráfico, Ingeniería del - Informática
    Highway communications
    Machine learning
    Aprendizaje automático
    Self-adaptive software
    Video surveillance
    Video
    Artificial intelligence
    Materias Unesco
    1203.04 Inteligencia Artificial
    1203.25 Diseño de Sistemas Sensores
    ISSN
    1424-8220
    Revisión por pares
    SI
    DOI
    10.3390/s24061822
    Patrocinador
    Junta de Castilla y León, Instituto de Competitividad Empresarial y Fondo Europeo de Desarrollo Regional (FEDER) - (grants 04/18/VA/0008, 04/18/VA/0013, 04/20/VA/0130)
    European Union’s Horizon 2020 and Innovation Program Marie Skłodowska-Curie - (Grant 101008297)
    Version del Editor
    https://www.mdpi.com/1424-8220/24/6/1822
    Propietario de los Derechos
    © 2024 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/68101
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    A-Self-Adaptive-Automatic-Incident-Detection-System.pdf
    Tamaño:
    9.749Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Atribución 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10