• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68120

    Título
    Application of convolutional neural networks in weed detection and identification: a systematic review
    Autor
    García Navarrete, Óscar LeonardoAutoridad UVA
    Correa Guimaraes, AdrianaAutoridad UVA
    Navas Gracia, Luis ManuelAutoridad UVA
    Año del Documento
    2024
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Agriculture, 2024, Vol. 14, Nº. 4, 568
    Résumé
    Weeds are unwanted and invasive plants that proliferate and compete for resources such as space, water, nutrients, and sunlight, affecting the quality and productivity of the desired crops. Weed detection is crucial for the application of precision agriculture methods and for this purpose machine learning techniques can be used, specifically convolutional neural networks (CNN). This study focuses on the search for CNN architectures used to detect and identify weeds in different crops; 61 articles applying CNN architectures were analyzed during the last five years (2019–2023). The results show the used of different devices to acquire the images for training, such as digital cameras, smartphones, and drone cameras. Additionally, the YOLO family and algorithms are the most widely adopted architectures, followed by VGG, ResNet, Faster R-CNN, AlexNet, and MobileNet, respectively. This study provides an update on CNNs that will serve as a starting point for researchers wishing to implement these weed detection and identification techniques
    Materias (normalizadas)
    Precision agriculture
    Agricultural innovations
    Agricultura - Innovaciones tecnológicas
    Weeds
    Malas hierbas
    Weeds - Control
    Control de malezas
    Artificial intelligence -- Agricultural applications
    Machine learning
    Aprendizaje automático
    Computer vision
    Visión artificial (Robótica)
    Image processing
    Imágenes, Tratamiento de las
    Neural networks (Computer science)
    Redes neuronales (Informática)
    Sustainable agriculture
    Agricultura sostenible
    Materias Unesco
    3102 Ingeniería Agrícola
    1203.04 Inteligencia Artificial
    1203.17 Informática
    ISSN
    2077-0472
    Revisión por pares
    SI
    DOI
    10.3390/agriculture14040568
    Patrocinador
    Union Europea, Programa Horizonte - (project HORIZON-CL6-2022-FARM2FORK-01)
    Version del Editor
    https://www.mdpi.com/2077-0472/14/4/568
    Propietario de los Derechos
    © 2024 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/68120
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [291]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Application-of-Convolutional-Neural-Networks.pdf
    Tamaño:
    1.141Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10