Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68172
Título
Stable Manifolds of Two-dimensional Biholomorphisms Asymptotic to Formal Curves
Año del Documento
2021
Documento Fuente
International Mathematics Research Notices, Vol. 2021, No. 17, pp. 12847–12887
Résumé
Let F ∈ Diff (C2, 0) be a germ of a holomorphic diffeomorphism and let G be an
invariant formal curve of F. Assume that the restricted diffeomorphism F|G is either
hyperbolic attracting or rationally neutral non-periodic (these are the conditions that
the diffeomorphism F|G should satisfy, if G were convergent, in order to have orbits
converging to the origin). Then we prove that F has finitely many stable manifolds,
either open domains or parabolic curves, consisting of and containing all converging
orbits asymptotic to G. Our results generalize to the case where G is a formal periodic
curve of F.
ISSN
1073-7928
Revisión por pares
SI
Patrocinador
First, third and fourth authors partially supported by Ministerio de Economía y Competitividad, Spain, process MTM2016-77642-C2-1-P; first and second authors, by MATHAmSud 2014 grant “Geometry and Dynamics of Holomorphic Foliations”; second author, by ANR project LAMBDA, ANR-13-BS01-0002.
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Fichier(s) constituant ce document