Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68189
Título
Quasi-analytic solutions of analytic ordinary differential equations and o-minimal structures
Autor
Año del Documento
2007
Editorial
London Mathematical Society
Documento Fuente
Proc. London Math. Soc. (3) 95 (2007) 413–442
Abstract
It is well known that the non-spiraling leaves of real analytic foliations of codimension 1 all belong to the same o-minimal structure. Naturally, the question arises of whether the same statement is true for non-oscillating trajectories of real analytic vector fields.
We show, under certain assumptions, that such a trajectory generates an o-minimal and model-complete structure together with the analytic functions. The proof uses the asymptotic theory of irregular singular ordinary differential equations in order to establish a quasi-analyticity result from which the main theorem follows.
As applications, we present an infinite family of o-minimal structures such that any two of them do not admit a common extension, and we construct a non-oscillating trajectory of a real analytic vector field in R5 that is not definable in any o-minimal extension of R.
ISSN
0024-6115
Revisión por pares
SI
Propietario de los Derechos
London Mathematical Society
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Files in questo item