• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68191

    Título
    Non oscillating solutions of analytic gradient vector fields
    Autor
    Sanz Sánchez, FernandoAutoridad UVA Orcid
    Año del Documento
    1998
    Editorial
    Centre Mersenne
    Documento Fuente
    Annales de l’institut Fourier, tome 48, no 4 (1998), p. 1045-1067
    Abstract
    Let \gamma be an integral solution of an analytic real vector field defined in a neighbordhood of 0\in R3. Suppose that \gamma has a single limit point at 0. We say that \gamma is non oscillating if, for any analytic surface H, either \gamma is contained in H or \gamma cuts H only finitely many times. In this paper we give a sufficient condition for \gamma to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for the solutions of a gradient vector field 𝛻g f of an analytic function f of order 2 at 0, where g is an analytic riemannian metric.
    Palabras Clave
    Vector field - Gradient - Tangent - Oscillation - Blowing-up - Desingularization - Center manifold
    ISSN
    0373-0956
    Revisión por pares
    SI
    DOI
    10.5802/aif.1648
    Patrocinador
    Partially supported by DGICYT; PB94-1124 and TMR; ERBFMRXCT96-0040
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/68191
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP96 - Artículos de revista [97]
    Show full item record
    Files in this item
    Nombre:
    1998_Sanz-AIF.pdf
    Tamaño:
    1.860Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10