Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68191
Título
Non oscillating solutions of analytic gradient vector fields
Autor
Año del Documento
1998
Editorial
Centre Mersenne
Documento Fuente
Annales de l’institut Fourier, tome 48, no 4 (1998), p. 1045-1067
Abstract
Let \gamma be an integral solution of an analytic real vector field defined in a neighbordhood of
0\in R3. Suppose that \gamma has a single limit point at 0. We say that \gamma is non oscillating if, for any analytic surface H, either \gamma is contained in H or \gamma cuts H only finitely many times. In this paper we give a sufficient condition for \gamma to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for the solutions of a gradient vector field 𝛻g f of an analytic function f of order 2 at 0, where g is an analytic riemannian metric.
Palabras Clave
Vector field - Gradient - Tangent - Oscillation - Blowing-up - Desingularization - Center manifold
ISSN
0373-0956
Revisión por pares
SI
DOI
Patrocinador
Partially supported by DGICYT; PB94-1124 and TMR; ERBFMRXCT96-0040
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional