• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68194

    Título
    Champs de vecteurs analytiques et champs de gradients
    Autor
    LION, JEAN-MARIE
    MOUSSU, ROBERT
    Sanz Sánchez, FernandoAutoridad UVA Orcid
    Año del Documento
    2002
    Editorial
    Cambridge University Press
    Documento Fuente
    Ergod. Th. & Dynam. Sys. (2002), 22, 525–534
    Zusammenfassung
    A theorem of Łojasiewicz asserts that any relatively compact solution of a real analytic gradient vector field has finite length. We show here a generalization of this result for relatively compact solutions of an analytic vector field X with a smooth invariant hypersurface, transversally hyperbolic for X, where the restriction of the field is a gradient. This solves some instances of R. Thom’s Gradient Conjecture. Furthermore, if the dimension of the ambient space is three, these solutions do not oscillate (in the sense that they cut an analytic set only finitely many times) ; this can also be applied to some gradient vector fields.
    ISSN
    0143-3857
    Revisión por pares
    SI
    DOI
    10.1017/S0143385702000251
    Patrocinador
    Travail financ´e par le CNRS et le r´eseau europ´een TMR Sing.Ec.Diff. et Feuilletages
    Propietario de los Derechos
    Cambridge University Press
    Idioma
    fra
    URI
    https://uvadoc.uva.es/handle/10324/68194
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP96 - Artículos de revista [95]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    lms241000.dvi
    Tamaño:
    41.5Kb
    Formato:
    application/x-dvi
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10