• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68422

    Título
    Machine learning classification–Regression schemes for desert locust presence prediction in western Africa
    Autor
    Cornejo Bueno, Laura
    Pérez Aracil, Jorge
    Casanova Mateo, Carlos
    Sanz Justo, María JuliaAutoridad UVA Orcid
    Salcedo Sanz, Sancho
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Applied Sciences, 2023, Vol. 13, Nº. 14, 8266
    Zusammenfassung
    For decades, humans have been confronted with numerous pest species, with the desert locust being one of the most damaging and having the greatest socio-economic impact. Trying to predict the occurrence of such pests is often complicated by the small number of records and observations in databases. This paper proposes a methodology based on a combination of classification and regression techniques to address not only the problem of locust sightings prediction, but also the number of locust individuals that may be expected. For this purpose, we apply different machine learning (ML) and related techniques, such as linear regression, Support Vector Machines, decision trees, random forests and neural networks. The considered ML algorithms are evaluated in three different scenarios in Western Africa, mainly Mauritania, and for the elaboration of the forecasting process, a number of meteorological variables obtained from the ERA5 reanalysis data are used as input variables for the classification–regression machines. The results obtained show good performance in terms of classification (appearance or not of desert locust), and acceptable regression results in terms of predicting the number of locusts, a harder problem due to the small number of samples available. We observed that the RF algorithm exhibited exceptional performance in the classification task (presence/absence) and achieved noteworthy results in regression (number of sightings), being the most effective machine learning algorithm among those used. It achieved classification results, in terms of F-score, around the value of 0.9 for the proposed Scenario 1.
    Materias (normalizadas)
    Desert locust
    Plagas de insectos
    Langosta (Insecto)
    Classification
    Regression analysis
    Análisis de regresión
    Statistical Learning
    Machine learning
    Aprendizaje automático
    Artificial intelligence
    Remote sensing
    Teledeteccion
    Materias Unesco
    1203.04 Inteligencia Artificial
    1209.01 Estadística Analítica
    ISSN
    2076-3417
    Revisión por pares
    SI
    DOI
    10.3390/app13148266
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades - (project PID2020-115454GB-C21595)
    Version del Editor
    https://www.mdpi.com/2076-3417/13/14/8266
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/68422
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP31 - Artículos de revista [166]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Machine-Learning-Classification.pdf
    Tamaño:
    1.723Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Atribución 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10