Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68422
Título
Machine learning classification–Regression schemes for desert locust presence prediction in western Africa
Autor
Año del Documento
2023
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Applied Sciences, 2023, Vol. 13, Nº. 14, 8266
Résumé
For decades, humans have been confronted with numerous pest species, with the desert locust being one of the most damaging and having the greatest socio-economic impact. Trying to predict the occurrence of such pests is often complicated by the small number of records and observations in databases. This paper proposes a methodology based on a combination of classification and regression techniques to address not only the problem of locust sightings prediction, but also the number of locust individuals that may be expected. For this purpose, we apply different machine learning (ML) and related techniques, such as linear regression, Support Vector Machines, decision trees, random forests and neural networks. The considered ML algorithms are evaluated in three different scenarios in Western Africa, mainly Mauritania, and for the elaboration of the forecasting process, a number of meteorological variables obtained from the ERA5 reanalysis data are used as input variables for the classification–regression machines. The results obtained show good performance in terms of classification (appearance or not of desert locust), and acceptable regression results in terms of predicting the number of locusts, a harder problem due to the small number of samples available. We observed that the RF algorithm exhibited exceptional performance in the classification task (presence/absence) and achieved noteworthy results in regression (number of sightings), being the most effective machine learning algorithm among those used. It achieved classification results, in terms of F-score, around the value of 0.9 for the proposed Scenario 1.
Materias (normalizadas)
Desert locust
Plagas de insectos
Langosta (Insecto)
Classification
Regression analysis
Análisis de regresión
Statistical Learning
Machine learning
Aprendizaje automático
Artificial intelligence
Remote sensing
Teledeteccion
Materias Unesco
1203.04 Inteligencia Artificial
1209.01 Estadística Analítica
ISSN
2076-3417
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades - (project PID2020-115454GB-C21595)
Version del Editor
Propietario de los Derechos
© 2023 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional