• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/69503

    Título
    Simulation of closed timelike curves in a Darwinian approach to quantum mechanics
    Autor
    Baladrón García, CarlosAutoridad UVA
    Khrennikov, Andrei
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Universe, 2023, Vol. 9, Nº. 2, 64
    Abstract
    Closed timelike curves (CTCs) are non-intuitive theoretical solutions of general relativity field equations. The main paradox associated with the physical existence of CTCs, the so-called grandfather paradox, can be satisfactorily solved by a quantum model named Deutsch-CTC. An outstanding theoretical result that has been demonstrated in the Deutsch-CTC model is the computational equivalence of a classical and a quantum computer in the presence of a CTC. In this article, in order to explore the possible implications for the foundations of quantum mechanics of that equivalence, a fundamental particle is modelled as a classical-like system supplemented with an information space in which a randomizer and a classical Turing machine are stored. The particle could then generate quantum behavior in real time in case it was controlled by a classical algorithm coding the rules of quantum mechanics and, in addition, a logical circuit simulating a CTC was present on its information space. The conditions that, through the action of evolution under natural selection, might produce a population of such particles with both elements on their information spaces from initial sheer random behavior are analyzed.
    Materias (normalizadas)
    Quantum physics
    Quantum theory
    Quanta, Teoría de los
    Physics
    Darwin, Charles
    Evolution (Biology)
    Evolución (Biologia)
    Evolución
    Differential geometry
    Materias Unesco
    22 Física
    2212 Física Teórica
    1204.04 Geometría Diferencial
    Palabras Clave
    Deutsch closed timelike curves
    ISSN
    2218-1997
    Revisión por pares
    SI
    DOI
    10.3390/universe9020064
    Patrocinador
    Union Europea - (project CA21169)
    Version del Editor
    https://www.mdpi.com/2218-1997/9/2/64
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/69503
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP33 - Artículos de revista [199]
    Show full item record
    Files in this item
    Nombre:
    Simulation-of-Closed-Timelike-Curves.pdf
    Tamaño:
    723.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10