• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/69766

    Título
    Time Series, Spectral Densities and Robust Functional Clustering
    Autor
    Rivera-García, Diego
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Ortega, Joaquín
    Año del Documento
    2020
    Descripción
    Producción Científica
    Documento Fuente
    Neural Processing Letters, 52(1), 135-152.
    Abstract
    In this work, a robust clustering algorithm for stationary time series is proposed.The algorithm is based on the use of estimated spectral densities, which are considered as functional data, as the basic characteristic of stationary time series for clustering purposes. A robust algorithm for functional data is then applied to the set of spectral densities. Trimming techniques and restrictions on the scatter within groups reduce the effect of noise in the data and help to prevent the identification of spurious clusters. The procedure is tested in a simulation study and is also applied to a real data set.
    Revisión por pares
    SI
    DOI
    10.1007/s11063-018-9926-1
    Patrocinador
    Spanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, Grants VA005P17 and VA002G18.
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/69766
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Collections
    • DEP24 - Artículos de revista [78]
    Show full item record
    Files in this item
    Nombre:
    ArticuloNEPL_v13.pdf
    Tamaño:
    2.420Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10