Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70050
Título
Systemic lupus erythematosus: how machine learning can help distinguish between infections and flares
Autor
Año del Documento
2024
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Bioengineering, 2024, Vol. 11, Nº. 1, 90
Abstract
Systemic Lupus Erythematosus (SLE) is a multifaceted autoimmune ailment that impacts multiple bodily systems and manifests with varied clinical manifestations. Early detection is considered the most effective way to save patients’ lives, but detecting severe SLE activity in its early stages is proving to be a formidable challenge. Consequently, this work advocates the use of Machine Learning (ML) algorithms for the diagnosis of SLE flares in the context of infections. In the pursuit of this research, the Random Forest (RF) method has been employed due to its performance attributes. With RF, our objective is to uncover patterns within the patient data. Multiple ML techniques have been scrutinized within this investigation. The proposed system exhibited around a 7.49% enhancement in accuracy when compared to k-Nearest Neighbors (KNN) algorithm. In contrast, the Support Vector Machine (SVM), Binary Linear Discriminant Analysis (BLDA), Decision Trees (DT) and Linear Regression (LR) methods demonstrated inferior performance, with respective values around 81%, 78%, 84% and 69%. It is noteworthy that the proposed method displayed a superior area under the curve (AUC) and balanced accuracy (both around 94%) in comparison to other ML approaches. These outcomes underscore the feasibility of crafting an automated diagnostic support method for SLE patients grounded in ML systems.
Materias (normalizadas)
Systemic lupus erythematosus
Lupus eritematoso
Autoimmune diseases
Enfermedades autoinmunes
Medical treatment
Tratamiento médico
Medicine
Inmunology
Public health
Machine learning
Aprendizaje automático
Artificial intelligence
Materias Unesco
32 Ciencias Médicas
2412 Inmunología
3212 Salud Publica
1203.04 Inteligencia Artificial
ISSN
2306-5354
Revisión por pares
SI
Patrocinador
Ministerio de Asuntos Económicos y Transformación Digital (MINECO) y Cátedra UCLM-Telefónica - (grant PID2021-125122OB-I00)
Version del Editor
Propietario de los Derechos
© 2024 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Atribución 4.0 Internacional