Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70092
Título
Increased mitochondrial nanotunneling activity, induced by calcium imbalance, affects intermitochondrial matrix exchanges
Autor
Año del Documento
2017
Descripción
Producción Científica
Documento Fuente
Lavorato M, Iyer VR, Dewight W, Cupo RR, Debattisti V, Gomez L, De la Fuente S, Zhao YT, Valdivia HH, Hajnóczky G, Franzini-Armstrong C. Increased mitochondrial nanotunneling activity, induced by calcium imbalance, affects intermitochondrial matrix exchanges. Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E849-E858. doi: 10.1073/pnas.1617788113. Epub 2017 Jan 17. PMID: 28096415; PMCID: PMC5293110.
Résumé
Exchanges of matrix contents are essential to the maintenance of mitochondria. Cardiac mitochondrial exchange matrix content in two ways: by direct contact with neighboring mitochondria and over longer distances. The latter mode is supported by thin tubular protrusions, called nanotunnels, that contact other mitochondria at relatively long distances. Here, we report that cardiac myocytes of heterozygous mice carrying a catecholaminergic polymorphic ventricular tachycardia-linked RyR2 mutation (A4860G) show a unique and unusual mitochondrial response: a significantly increased frequency of nanotunnel extensions. The mutation induces Ca2+ imbalance by depressing RyR2 channel activity during excitation-contraction coupling, resulting in random bursts of Ca2+ release probably due to Ca2+ overload in the sarcoplasmic reticulum. We took advantage of the increased nanotunnel frequency in RyR2A4860G+/- cardiomyocytes to investigate and accurately define the ultrastructure of these mitochondrial extensions and to reconstruct the overall 3D distribution of nanotunnels using electron tomography. Additionally, to define the effects of communication via nanotunnels, we evaluated the intermitochondrial exchanges of matrix-targeted soluble fluorescent proteins, mtDsRed and photoactivable mtPA-GFP, in isolated cardiomyocytes by confocal microscopy. A direct comparison between exchanges occurring at short and long distances directly demonstrates that communication via nanotunnels is slower.
ISSN
0027-8424
Revisión por pares
SI
Idioma
spa
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Tamaño:
23.19Mo
Formato:
Adobe PDF