Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70310
Título
Leveraging load balance metrics to unravel the impact of multi-access edge computing locations on online dynamic network performance
Autor
Año del Documento
2024
Editorial
Institute of Electrical and Electronics Engineers (IEEE)
Descripción
Producción Científica
Documento Fuente
IEEE Open Journal of the Communications Society, 2024, vol. 5, pp. 5635-5651
Zusammenfassung
Telecommunication operators are increasingly relying on Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC) to support emerging 5G/6G services, which demand ultralow latency and ultra-reliability. Employing NFV and MEC enable operators to deliver services through Service Function Chains (SFC) composed of Virtual Network Functions (VNFs) utilizing computing resources close to the end user. A critical challenge in this architecture is the efficient allocation of these resources and the strategic placement of MEC sites to host VNFs. This paper introduces, for the first time, a novel approach to efficiently determine where to locate MEC sites with the aim of optimizing dynamic performance. Instead of conducting time-consuming simulations to evaluate and compare each and every potential selection of MEC sites, we demonstrate that by quickly precomputing load balance metrics, such as the Jain fairness index (JFI), promising sets of sites can be identified. Our research shows that there is a statistically significant negative monotonic relationship between the precomputed JFI and the blocking probability when, during network operation, SFCs are dynamically established and released. Thus, by leveraging this fast identification method, network operators can focus their efforts, such as conducting detailed dynamic simulations (necessarily long and time-consuming since networks should operate with low or very low blocking ratios), solely on the most promising combinations. Therefore, this approach streamlines the process of determining the strategic location of MEC sites in a network, reducing the time required to plan and optimize the network configuration effectively.
Palabras Clave
Blocking ratio
Load balance
MEC placement
Network planning
Protection
Service Function Chains
ISSN
2644-125X
Revisión por pares
SI
Patrocinador
EU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442)
EU H2020 Research and Innovation Programme (Smart5Grid, grant no. 101016912)
Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)
Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033)
EU H2020 Research and Innovation Programme (Smart5Grid, grant no. 101016912)
Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)
Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033)
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Tamaño:
5.692Mb
Formato:
Adobe PDF
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional