• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Institutos de Investigación
    • Instituto Universitario de Investigación en Gestión Forestal Sostenible
    • IUGFS - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Institutos de Investigación
    • Instituto Universitario de Investigación en Gestión Forestal Sostenible
    • IUGFS - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70415

    Título
    Assessment of mycological possibility using machine learning models for effective inclusion in sustainable forest management
    Autor
    Martínez Rodrigo, RaquelAutoridad UVA Orcid
    Agueda Hernández, BeatrizAutoridad UVA Orcid
    Ágreda, Teresa
    Altelarrea, José Miguel
    Fernández Toirán, Luz MarinaAutoridad UVA Orcid
    Rodríguez Puerta, FranciscoAutoridad UVA
    Año del Documento
    2024
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sustainability, 2024, Vol. 16, Nº. 13, 5656
    Résumé
    The integral role of wild fungi in ecosystems, including provisioning, regulating, cultural, and supporting services, is well recognized. However, quantifying and predicting wild mushroom yields is challenging due to spatial and temporal variability. In Mediterranean forests, climate-change-induced droughts further impact mushroom production. Fungal fruiting is influenced by factors such as climate, soil, topography, and forest structure. This study aims to quantify and predict the mycological potential of Lactarius deliciosus in sustainably managed Mediterranean pine forests using machine learning models. We utilize a long-term dataset of Lactarius deliciosus yields from 17 Pinus pinaster plots in Soria, Spain, integrating forest-derived structural data, NASA Landsat mission vegetation indices, and climatic data. The resulting multisource database facilitates the creation of a two-stage ‘mycological exploitability’ index, crucial for incorporating anticipated mycological production into sustainable forest management, in line with what is usually done for other uses such as timber or game. Various Machine Learning (ML) techniques, such as classification trees, random forest, linear and radial support vector machine, and neural networks, were employed to construct models for classification and prediction. The sample was always divided into training and validation sets (70-30%), while the differences were found in terms of Overall Accuracy (OA). Neural networks, incorporating critical variables like climatic data (precipitation in January and humidity in November), remote sensing indices (Enhanced Vegetation Index, Green Normalization Difference Vegetation Index), and structural forest variables (mean height, site index and basal area), produced the most accurate and unbiased models (OAtraining = 0.8398; OAvalidation = 0.7190). This research emphasizes the importance of considering a diverse array of ecosystem variables for quantifying wild mushroom yields and underscores the pivotal role of Artificial Intelligence (AI) tools and remotely sensed observations in modeling non-wood forest products. Integrating such models into sustainable forest management plans is crucial for recognizing the ecosystem services provided by them.
    Materias (normalizadas)
    Mushrooms
    Hongos
    Edible mushrooms
    Hongos comestibles
    Non-wood forest products
    Forest products
    Productos forestales
    Remote sensing
    Teledetección
    Neural networks (Computer science)
    Redes neuronales (Informática)
    Forests and forestry
    Bosques y silvicultura
    Forest management
    Bosques - Gestión
    Sustainable development
    Desarrollo sostenible
    Materias Unesco
    2417.06 Micología (Setas)
    1203.04 Inteligencia Artificial
    1203.17 Informática
    3106 Ciencia Forestal
    ISSN
    2071-1050
    Revisión por pares
    SI
    DOI
    10.3390/su16135656
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades - (grant DI-17-9626)
    Version del Editor
    https://www.mdpi.com/2071-1050/16/13/5656
    Propietario de los Derechos
    © 2024 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/70415
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • IUGFS - Artículos de revista [141]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Assessment-of-Mycological-Possibility.pdf
    Tamaño:
    857.7Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Thumbnail

      Identifying forest structure types using National Forest Inventory Data: the case of sessile oak forest in the Cantabrian range 

      Reque Kilchenmann, José ArturoAutoridad UVA; Bravo Oviedo, FelipeAutoridad UVA (2008)
    • Thumbnail

      Forest diagnosis: stand, forest, stand typing and inventory 

      Reque Kilchenmann, José ArturoAutoridad UVA (2016)
    • Thumbnail

      Reconstrucción de la historia de perturbaciones y la dinámica forestal en tres zonas de Castilla y León, afectadas por la expansión forestal en tierras agrícolas abandonadas. 

      Suárez Oviedo, Maritza Isabel (2021)

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10