• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70628

    Título
    Validation of deep learning techniques for quality augmentation in diffusion MRI for clinical studies
    Autor
    Aja Fernández, SantiagoAutoridad UVA Orcid
    Martín Martín, CarmenAutoridad UVA
    Planchuelo Gómez, ÁlvaroAutoridad UVA Orcid
    Faiyaz, Abrar
    Uddin, Md Nasir
    Schifitto, Giovanni
    Tiwari, Abhishek
    Shigwan, Saurabh J.
    Kumar Singh, Rajeev
    Zheng, Tianshu
    Cao, Zuozhen
    Wu, Dan
    Blumberg, Stefano B.
    Sen, Snigdha
    Goodwin-Allcock, Tobias
    Slator, Paddy J.
    Yigit Avci, Mehmet
    Li, Zihan
    Bilgic, Berkin
    Tian, Qiyuan
    Wang, Xinyi
    Tang, Zihao
    Cabezas, Mariano
    Rauland, Amelie
    Merhof, Dorit
    Manzano María, Renata
    Campos, Vinícius Paraníba
    Santini, Tales
    da Costa Vieira, Marcelo Andrade
    HashemizadehKolowri, SeyyedKazem
    DiBella, Edward
    Peng, Chenxu
    Shen, Zhimin
    Chen, Zan
    Ullah, Irfan
    Mani, Merry
    Abdolmotallby, Hesam
    Eckstrom, Samuel
    Baete, Steven H.
    Filipiak, Patryk
    Dong, Tanxin
    Fan, Qiuyun
    Luis García, Rodrigo deAutoridad UVA Orcid
    Tristán Vega, AntonioAutoridad UVA Orcid
    Pieciak, TomászAutoridad UVA
    Año del Documento
    2023
    Editorial
    Elsevier
    Documento Fuente
    NeuroImage: Clinical, 2023, vol. 39, p. 103483
    Abstract
    The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients. The number of gradient directions had an impact on white matter analysis results, with statistically significant differences between groups being drastically reduced when using 21 gradient directions instead of the original 61. Fourteen teams from different institutions were tasked to use DL to enhance three diffusion metrics (FA, AD and MD) calculated from data acquired with 21 gradient directions and a b-value of 1000 s/mm2. The goal was to produce results that were comparable to those calculated from 61 gradient directions. The results were evaluated using both standard image quality metrics and Tract-Based Spatial Statistics (TBSS) to compare episodic and chronic migraine patients. The study results suggest that while most DL techniques improved the ability to detect statistical differences between groups, they also led to an increase in false positive. The results showed that there was a constant growth rate of false positives linearly proportional to the new true positives, which highlights the risk of generalization of AI-based tasks when assessing diverse clinical cohorts and training using data from a single group. The methods also showed divergent performance when replicating the original distribution of the data and some exhibited significant bias. In conclusion, extreme caution should be exercised when using AI methods for harmonization or synthesis in clinical studies when processing heterogeneous data in clinical studies, as important information may be altered, even when global metrics such as structural similarity or peak signal-to-noise ratio appear to suggest otherwise.
    Palabras Clave
    Deep learning
    Machine learning
    Artificial intelligence
    Diffusion MRI
    Angular resolution
    Diffusion tensor
    ISSN
    2213-1582
    Revisión por pares
    SI
    DOI
    10.1016/j.nicl.2023.103483
    Patrocinador
    Grant PID2021-124407NB-I00 - Ministerio de Ciencia e Innovación (Spain)
    Grant TED2021-130758B-I00 - Ministerio de Ciencia e Innovación (Spain) and NextGenerationEU/PRTR
    Grant PPN/BEK/2019/1/00421 - Polish National Agency for Academic Exchange
    Grants M020533, R006032, R014019, EP/S021930/1, EP/V034537/1 - EPSRC
    Grant MRFFAI000085 - Australia Medical Research Future Fund
    Grants ME 3737/19-1 and 269953372/GRK2150 - German Research Foundation
    Grants R01- EB028774 , R01-NS082436, R01-EB031169, R01-AG054328 and R01-MH118020 - National Council for Scientific and Technological Development (CNPq) and National Institute of Health
    Grant 2021ZD0200202 - Ministry of Science and Technology of the People’s Republic of China
    Grants 81971606, 82122032 - National Natural Science Foundation of China
    Grants 202006140, 2022C03057 - Science and Technology Department of Zhejiang Province
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/70628
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    1-s2.0-S2213158223001742-main.pdf
    Tamaño:
    4.705Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10