Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70835
Título
Invariant surfaces for toric type foliations in dimension three
Año del Documento
2021
Editorial
Universitat Autònoma de Barcelona
Documento Fuente
Publicacions Matemàtiques, 2021 vol. 65, n.1, pp. 291-307
Abstract
A foliation is of toric type when it has a combinatorial reduction of singularities. We show that every toric type foliation on (C3, 0) without saddle-nodes has invariant surface. We extend the argument of Cano–Cerveau for the nondicritical case to the compact dicritical components of the exceptional divisor. These components are projective toric surfaces and the isolated invariant branches of the induced foliation extend to closed irreducible curves. We build the invariant surface as a germ along the singular locus and those closed irreducible invariant curves. The result of Ortiz-Bobadilla & Rosales-González &Voronin about the distribution of invariant branches in dimension two is a key argument in our proof.
Materias (normalizadas)
Foliación
Materias Unesco
1201.01 Geometría Algebraica
Palabras Clave
Singular foliations
Invariant surfaces
Toric varieties
Combinatorial blowing-ups.
ISSN
0214-1493
Revisión por pares
SI
Patrocinador
Ministerio de Economía y Competitividad from Spain, under the Project “Algebra y geometría en sistemas dinámicos y foliaciones singulares.” (Ref.: MTM2016 77642-C2-1-P). The second author is also supported
by the Ministerio de Educaci´on, Cultura y Deporte of Spain (FPU14/02653 grant).
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Tamaño:
330.4Kb
Formato:
Adobe PDF
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional