Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70945
Título
Dataset: Non-binary m-sequences for more comfortable brain–computer interfaces based on c-VEPs
Autor
Año del Documento
2024-10-25
Documento Fuente
Martínez-Cagigal, V., Santamaría-Vázquez, E., Pérez-Velasco, S., Marcos-Martínez, D., Moreno-Calderón, S., & Hornero, R. (2023). Non-binary m-sequences for more comfortable brain–computer interfaces based on c-VEPs. Expert Systems with Applications, 232, 120815.
Zusammenfassung
Code-modulated visual evoked potentials (c-VEPs) have marked a milestone in the scientific literature due to their ability to achieve reliable, high-speed brain–computer interfaces (BCIs) for communication and control. Generally, these expert systems rely on encoding each command with shifted versions of binary pseudorandom sequences, i.e., flashing black and white targets according to the shifted code. Despite the excellent results in terms of accuracy and selection time, these high-contrast stimuli cause eyestrain for some users. For this reason, we propose the use of non-binary p-ary m-sequences, whose levels are encoded with different shades of gray, as a more pleasant alternative than traditional binary codes.
In this dataset, a total of 16 healthy participants engaged in BCI spelling tasks using five different p-ary m-sequences: binary GF(2^6) with a base of 2, GF(3^5) with a base of 3, GF(5^3) with a base of 5, GF(7^2) with a base of 7, and GF(11^2) with a base of 11. Each participant completed a single session that included a calibration phase consisting of 300 cycles (repetitions of the p-ary m-sequence), followed by an online spelling task of 32 trials (with 10 cycles per trial) for each condition. Online selections were made using a 4x4 command matrix (chance level of 6.25%), consisting of alphabetic characters from A to P. In addition, qualitative measures regarding visual fatigue and satisfaction were collected.
Materias (normalizadas)
Neurotechnology
Biomedical Engineering
Artificial intelligence
Computer science
Neuroscience
Materias Unesco
2490 Neurociencias
1203.04 Inteligencia Artificial
Palabras Clave
Non-binary codes
Visual fatigue
Code-modulated visual evoked potential (c-VEP)
Brain–computer interface (BCI)
Electroencephalography (EEG)
Departamento
Grupo de Ingeniería Biomédica
Departamento de Informática
Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática
Departamento de Informática
Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática
Patrocinador
TED2021-129915B-I00, RTC2019-007350-1, and PID2020-115468RB-I00
CIBER-BBN
CIBER-BBN
Idioma
spa
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Es referenciado por
Martínez-Cagigal, V., Santamaría-Vázquez, E., Pérez-Velasco, S., Marcos-Martínez, D., Moreno-Calderón, S., & Hornero, R. (2023). Non-binary m-sequences for more comfortable brain–computer interfaces based on c-VEPs. Expert Systems with Applications, 232, 120815. DOI: https://doi.org/10.1016/j.eswa.2023.120815
Aparece en las colecciones
- Datasets [52]
Dateien zu dieser Ressource
Tamaño:
950.4Mb
Formato:
application/zip
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución-NoComercial-CompartirIgual 4.0 Internacional