• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Research Data
    • Datasets
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Research Data
    • Datasets
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70945

    Título
    Dataset: Non-binary m-sequences for more comfortable brain–computer interfaces based on c-VEPs
    Autor
    Martínez Cagigal, VíctorAutoridad UVA Orcid
    Editor
    Universidad de Valladolid. Grupo de Ingeniería Biomédica
    Año del Documento
    2024-10-25
    Documento Fuente
    Martínez-Cagigal, V., Santamaría-Vázquez, E., Pérez-Velasco, S., Marcos-Martínez, D., Moreno-Calderón, S., & Hornero, R. (2023). Non-binary m-sequences for more comfortable brain–computer interfaces based on c-VEPs. Expert Systems with Applications, 232, 120815.
    Abstract
    Code-modulated visual evoked potentials (c-VEPs) have marked a milestone in the scientific literature due to their ability to achieve reliable, high-speed brain–computer interfaces (BCIs) for communication and control. Generally, these expert systems rely on encoding each command with shifted versions of binary pseudorandom sequences, i.e., flashing black and white targets according to the shifted code. Despite the excellent results in terms of accuracy and selection time, these high-contrast stimuli cause eyestrain for some users. For this reason, we propose the use of non-binary p-ary m-sequences, whose levels are encoded with different shades of gray, as a more pleasant alternative than traditional binary codes. In this dataset, a total of 16 healthy participants engaged in BCI spelling tasks using five different p-ary m-sequences: binary GF(2^6) with a base of 2, GF(3^5) with a base of 3, GF(5^3) with a base of 5, GF(7^2) with a base of 7, and GF(11^2) with a base of 11. Each participant completed a single session that included a calibration phase consisting of 300 cycles (repetitions of the p-ary m-sequence), followed by an online spelling task of 32 trials (with 10 cycles per trial) for each condition. Online selections were made using a 4x4 command matrix (chance level of 6.25%), consisting of alphabetic characters from A to P. In addition, qualitative measures regarding visual fatigue and satisfaction were collected.
    Materias (normalizadas)
    Neurotechnology
    Biomedical Engineering
    Artificial intelligence
    Computer science
    Neuroscience
    Materias Unesco
    2490 Neurociencias
    1203.04 Inteligencia Artificial
    Palabras Clave
    Non-binary codes
    Visual fatigue
    Code-modulated visual evoked potential (c-VEP)
    Brain–computer interface (BCI)
    Electroencephalography (EEG)
    Departamento
    Grupo de Ingeniería Biomédica
    Departamento de Informática
    Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    DOI
    10.71569/025s-eq10
    Patrocinador
    TED2021-129915B-I00, RTC2019-007350-1, and PID2020-115468RB-I00
    CIBER-BBN
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/70945
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Es referenciado por
    Martínez-Cagigal, V., Santamaría-Vázquez, E., Pérez-Velasco, S., Marcos-Martínez, D., Moreno-Calderón, S., & Hornero, R. (2023). Non-binary m-sequences for more comfortable brain–computer interfaces based on c-VEPs. Expert Systems with Applications, 232, 120815. DOI: https://doi.org/10.1016/j.eswa.2023.120815
    Collections
    • Datasets [67]
    Show full item record
    Files in this item
    Nombre:
    _additional_info.zip
    Tamaño:
    1.612Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    _scripts.zip
    Tamaño:
    3.588Kb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    btfc.zip
    Tamaño:
    60.10Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    bvgy.zip
    Tamaño:
    61.46Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    eimw.zip
    Tamaño:
    57.28Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    fjax.zip
    Tamaño:
    58.91Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    hgab.zip
    Tamaño:
    57.40Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    hmfm.zip
    Tamaño:
    58.03Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    iuvo.zip
    Tamaño:
    54.03Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    lvpg.zip
    Tamaño:
    58.45Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    opqm.zip
    Tamaño:
    57.29Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    pcsa.zip
    Tamaño:
    55.59Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    pkel.zip
    Tamaño:
    58.40Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    qtce.zip
    Tamaño:
    55.30Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    readme.pdf
    Tamaño:
    194.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Nombre:
    sbbh.zip
    Tamaño:
    56.82Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    vfab.zip
    Tamaño:
    58.20Mb
    Formato:
    application/zip
    FilesOpen
    Nombre:
    zdvm.zip
    Tamaño:
    104.9Mb
    Formato:
    application/zip
    FilesOpen
    Atribución-NoComercial-CompartirIgual 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10