• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72468

    Título
    First evaluation of fire severity retrieval from PRISMA hyperspectral data
    Autor
    Quintano Pastor, María del CarmenAutoridad UVA Orcid
    Calvo, Leonor
    Fernández Manso, Alfonso
    Suárez Seoane, Susana
    Fernandes, Paulo
    Fernández Guisuraga, José Manuel
    Año del Documento
    2023
    Editorial
    Elsevier
    Documento Fuente
    Remote Sensing of Environment , 2023, 295, 113670
    Resumo
    The unprecedented availability of spaceborne hyperspectral data has great potential to provide fire severity estimates that align with post-fire management needs, overcoming complex logistics and data acquisition costs of airborne hyperspectral sensors, and the suboptimal sensitivity of broadband data to several post-fire ground components. We analyzed the feasibility of the PRISMA mission -one of the first spaceborne spectrometers operationally active- to assess fire severity by leveraging hyperspectral data dimensionality through the retrieval of sub-pixel components directly related to fire severity in the field. Multispectral data provided by Sentinel-2, commonly used in fire severity quantitative assessments, were used as a benchmark method. Multiple endmember spectral mixture analysis (MESMA) was used to retrieve fractional cover of char, photosynthetic vegetation (PV), as well as non-photosynthetic vegetation and soil (NPVS) from post-fire PRISMA Level 2D and Sentinel-2 Level 2A scenes in one of the largest wildfires ever recorded in the western Mediterranean Basin. Ground-truth data were obtained using the Composite Burn Index (CBI) to procure three field-measured severity metrics: vegetation, soil and site. The relationship between the CBI data on a continuum scale and the cover of char, PV and NPVS image fractions retrieved from PRISMA and Sentinel-2 was assessed through Random Forest regression (RFR). Likewise, Ordinal Forests (OF) algorithm was used to classify categorized CBI data (low, moderate and high fire severity). PRISMA-based RFR fire severity estimates at vegetation, soil and site levels (R2 = 0.64–0.79 and RMSE = 0.33–0.41) outperformed those of Sentinel-2 (R2 = 0.27–0.53 and RMSE = 0.54–0.60), and were in line with previous studies using airborne hyperspectral sensors at higher spatial resolution. Fire severity underestimation for high field CBI values was almost unnoticeable in the PRISMA estimates. Categorical fire severity, not currently estimated using hyperspectral data but with high interest in post-fire management, were accurately predicted by PRISMA-based OF classification, with consistent user's and producer's accuracy for each fire severity category. The high confusion between moderate and low/high fire severity categories, typical when unmixing broadband multispectral data, was overcome by the PRISMA-based classification scheme. Our results suggest that new spaceborne spectrometer missions can support reliable fire severity assessments equivalent to airborne spectrometers, but readily applicable to large-scale assessments of extreme wildfire events.
    Revisión por pares
    SI
    DOI
    10.1016/j.rse.2023.113670
    Patrocinador
    Spanish Ministry of Science and Innovation and NextGenerationEU funds, in the framework of the FIREMAP (TED2021-130925B-I00) project
    Regional Governments of Castilla and León, in the framework of the WUIFIRECYL (LE005P20) project
    Principality of Asturias/FICYT (AYUD/2021/51261)
    British Ecological Society in the framework of the SR22–100154 project
    Portuguese Foundation for Science and Technology in the frame of project UIDB/04033/2020.
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0034425723002213
    Propietario de los Derechos
    Elsevier
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/72468
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP69 - Artículos de revista [32]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    2023 RSE First evaluation of fire severity retrieval.pdf
    Tamaño:
    1.733Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10