Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72722
Título
Finding eigenvectors with a quantum variational algorithm
Año del Documento
2024
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Garcia-Escartin, J.C. Finding eigenvectors with a quantum variational algorithm. Quantum Inf Process 23, 254 (2024).
Abstract
This paper presents a hybrid variational quantum algorithm that finds a random eigen-
vector of a unitary matrix with a known quantum circuit. The algorithm is based on the
SWAP test on trial states generated by a parametrized quantum circuit. The eigenvec-
tor is described by a compact set of classical parameters that can be used to reproduce
the found approximation to the eigenstate on demand. This variational eigenvector finder can be adapted to solve the generalized eigenvalue problem, to find the eigenvectors of normal matrices and to perform quantum principal component analysis on unknown input mixed states. These algorithms can all be run with low-depth quantum circuits, suitable for an efficient implementation on noisy intermediate-scale quantum computers and, with some restrictions, on linear optical systems. In full-scale quantum computers, where there might be optimization problems due to barren plateaus in larger systems, the proposed algorithms can be used as a primitive to boost known quantum algorithms. Limitations and potential applications are discussed.
Materias (normalizadas)
Computación cuántica
Algoritmos cuánticos
Algoritmos variacionales
Fotónica
Materias Unesco
2210.23 Teoría Cuántica
1203 Ciencia de Los Ordenadores
2209 Óptica
Palabras Clave
Autovalores
Algoritmos cuánticos
Algoritmos variacionales
ISSN
1573-1332
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación (MCIN), project PID2020-119418GB-I00
European Union NextGeneration UE/MICIU/Plan de Recuperación, Transformación y Resiliencia/Junta de Castilla y León.
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
European Union NextGeneration UE/MICIU/Plan de Recuperación, Transformación y Resiliencia/Junta de Castilla y León.
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Version del Editor
Propietario de los Derechos
Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Autor: Juan Carlos García Escartín. Editor: Springer Nature
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item