Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72887
Título
Low temperature pyrolysis of thin film composite polyphosphazene membranes for hot gas separation
Año del Documento
2023
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Materials Today Nano 24 (2023) 100379
Abstract
Highly selective thin-film composite membranes for hot hydrogen sieving are prepared via the pyrolysis of thin cyclomatric polyphenoxy phosphazene films that are prepared via a non-conventional interfacial polymerization of hexachlorocyclotriphosphazene with 1,3,5-trihydroxybenzene or m-dihydroxybenzene. The presence of the cyclic phosphazene ring within the weakly branched polymer films gives rise to a distinct thermal degradation evolution, with an onset temperature of around 200 °C. For the trihydroxybenzene derived material, the hydrogen permselectivity of the films shows a maximum pyrolysis temperature of around 450 °C. At this temperature a compact atomic structure is obtained that comprises mostly disordered carbon and accommodates P–O–C and P–O–P bonds. During thermal treatment, these films reveal molecular sieving with permselectivities exceeding 100 for H2/N2, H2/CH4, and H2/CO2, and a hydrogen permeance of 2 × 10−10 to 1.5 × 10−8 mol/m2/s/Pa (0.6-44.8GPU), at 200 °C. At ambient temperatures, thin films are very effective barriers for small gas molecules. Because of the inexpensive facile synthesis and low- temperature pyrolysis, the polyphosphazene films have the potential for use in high-temperature industrial gas separations, as well as for use as barriers such as liners in high- pressure hydrogen storage vessels at ambient temperature.
Revisión por pares
SI
Patrocinador
European Union's Horizon 2020 - GENESIS project- Grant Agreement No. 760899.
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional