Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72906
Título
Audio Cough Analysis by Parametric Modelling of Weighted Spectrograms to Interpret the Output of Convolutional Neural Networks
Autor
Congreso
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2024)
Año del Documento
2024
Editorial
IEEE, Institute of Electrical and Electronics Engineers
Descripción Física
4 p.
Descripción
Producción Científica
Documento Fuente
46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, Florida, USA, July 15-19, 2024.
Resumo
This study explores the feasibility of employing eXplainable Artificial Intelligence XAI methodologies for the analysis of cough patterns in respiratory diseases. A cohort of 20 adult patients, all presenting persistent cough as a symptom of respiratory disease, was monitored for 24 hours using a smartphone. The audio signals underwent frequency domain transformation to yield 1-second spectrograms, subsequently processed by a CNN to detect cough events. Quantitative analysis of spectrogram regions relevant for cough detection highlighted by occlusion maps, revealed significant differences between patient groups. Notably, distinctions were observed between the Chronic Obstructive Pulmonary Disease (COPD) patient group and groups with other respiratory pathologies, both chronic and non-chronic. In conclusion, interpretability analysis methods applied to neural networks offer insights into cough-related distinctions among patients with varying respiratory conditions.
Materias (normalizadas)
Detección
CAD
Procesado de señal
Machine learning
Deep learning
Materias Unesco
3306 Ingeniería y Tecnología Eléctricas
Palabras Clave
Respiratory diseases
cough
audio analysis
CNN
XAI
occlusion maps
ISBN
979-8-3503-7149-9
Patrocinador
This work is part of the project TED2021-131536B-I00, funded by Spanish MCIN/AEI/10.13039/501100011033 and EU’s “NextGenerationEU”/PRTR
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional