• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72930

    Título
    Data-based decomposition plant for decentralized monitoring schemes: a comparative study
    Autor
    Fuente Aparicio, María Jesús de laAutoridad UVA Orcid
    Galende Hernández, MartaAutoridad UVA Orcid
    Sáinz Palmero, Gregorio IsmaelAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Process Control, marzo 2024, vol. 135, 103178
    Resumen
    The complexity of the industrial processes, large-scale plants and the massive use of distributed control systems and sensors are challenges which open ways for alternative monitoring systems. The decentralized monitoring methods are one option to deal with these complex challenges. These methods are based on process decomposition, i.e., dividing the plant variables into blocks, and building statistical data models for every block to perform local monitoring. After that, the local monitoring results are integrated through a decision fusion algorithm for a global output concerning the process. However, decentralized process monitoring has to deal with a critical issue: a proper process decomposition, or block division, using only available data. Knowledge of the plant is rarely available, so data-driven approaches can help to manage this issue. Moreover, this is the first and key step to developing decentralized monitoring models and several alternative approaches are available. In this work a comparative study is carried out regarding decentralized fault monitoring methods, comparing several alternative proposals for process decomposition based on data. These methods are based on information theory, regression and clustering, and are compared in terms of their monitoring performance. When the blocks are obtained, CVA (Canonical Variate Analysis) based local dynamic monitors are set up to characterize the local process behavior, while also considering the dynamic nature of the industrial plants. Finally, the Bayesian Inference Index (BII) is implemented, based on these local monitoring, to achieve a global outcome regarding fault detection for the whole process. To further compare their performance from the application viewpoint, the Tennessee Eastman (TE) process, a well-known industrial benchmark, is used to illustrate the efficiencies of all the discussed methods. So, a systematically comparison have been carried out involving different data-driven methods for process decomposition to implement a decentralized monitoring scheme. The results are focused on providing a reference for practitioners as guidelines for successful decentralized monitoring strategies.
    Palabras Clave
    Fault detection
    Canonical Variate
    Analysis Regression
    Correlation
    Mutual information
    Clustering
    Decentralized process monitoring
    Bayesian Inference
    ISSN
    0959-1524
    Revisión por pares
    SI
    DOI
    10.1016/j.jprocont.2024.103178
    Patrocinador
    Minsterio de Ciencia e Innovación/AEI (PID2019-105434RB-C32)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0959152424000180
    Propietario de los Derechos
    © 2024 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/72930
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    jprocont135_data-based-decomposition-plant-for-decentralized-monitoring-schemes.pdf
    Tamaño:
    1.532Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10