• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72932

    Título
    Digital Twin Learning Ecosystem: A cyber–physical framework to integrate human-machine knowledge in traditional manufacturing
    Autor
    García, Álvaro
    Bregón Bregón, AníbalAutoridad UVA
    Martínez Prieto, Miguel AngelAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Internet of Things, abril 2024, vol. 25, 101094
    Resumo
    As Industry 4.0 enablers, digital twins of manufacturing systems have led to multiple interaction levels among processes, systems, and workers across the factory. However, open issues still exist when addressing cyber–physical convergence in traditional manufacturing small and medium-sized enterprises. The problem for both traditional operators and the existing infrastructure is how to adapt knowledge to the increasing business needs of manufacturing plants that demand high efficiency, while reducing production costs. In this paper, a framework that implements the novel concept of Digital Twin Learning Ecosystem in traditional manufacturing is presented. The objective is to facilitate the integration of human-machine knowledge in different industrial cyber–physical contexts and eliminate existing technological and workforce barriers. This adaptive approach is particularly important in meeting the requirements to help small and medium-sized enterprises build their own interconnected Digital Twin Learning Ecosystem. The contribution of this work lies in a single digital twin learning framework for different traditional manufacturing scenarios that can work from scratch using a light infrastructure, reusing the knowledge and common condition-based methods well-known by skilled workers to rapidly and flexibly integrate existing legacy resources in a non-intrusive manner. The solution was tested using real data from a milling machine and a currently operating induction furnace with a maximum power of 12 MW in a foundry plant. In both cases, the proposed solution proved its benefits: first, by providing augmented methods for maintenance operations on the milling machine and second, by improving the power efficiency of the induction furnace by approximately 9 percent.
    Materias Unesco
    1203 Ciencia de Los Ordenadores
    Palabras Clave
    Digital Twin
    Manufacturing
    Industry 4.0
    Human-machine interaction
    SMEs
    Cyber-physical systems
    Retrofitting
    IIoT
    Machine learning
    ISSN
    2542-6605
    Revisión por pares
    SI
    DOI
    10.1016/j.iot.2024.101094
    Patrocinador
    Ministerio de Ciencia e Innovación (PID2021-126659OB-I00)
    Instituto para la Competitividad Empresarial de Castilla y León/FEDER (CCTT4/20/VA/0012)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S2542660524000362
    Propietario de los Derechos
    © 2024 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/72932
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [109]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    iot25_digital-twin-learning-ecosystem-cyber-physical-framework-integrate-human-machine-knowledge-traditional-manufacturing.pdf
    Tamaño:
    2.932Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10