• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72938

    Título
    Graph Neural Network contextual embedding for Deep Learning on tabular data
    Autor
    Villaizán Vallelado, MarioAutoridad UVA Orcid
    Salvatori, Matteo
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Neural Networks, mayo 2024, vol. 173, 106180
    Abstract
    All industries are trying to leverage Artificial Intelligence (AI) based on their existing big data which is available in so called tabular form, where each record is composed of a number of heterogeneous continuous and categorical columns also known as features. Deep Learning (DL) has constituted a major breakthrough for AI in fields related to human skills like natural language processing, but its applicability to tabular data has been more challenging. More classical Machine Learning (ML) models like tree-based ensemble ones usually perform better. This paper presents a novel DL model using Graph Neural Network (GNN) more specifically Interaction Network (IN), for contextual embedding and modeling interactions among tabular features. Its results outperform those of a recently published survey with DL benchmark based on seven public datasets, also achieving competitive results when compared to boosted-tree solutions.
    Materias Unesco
    1203 Ciencia de Los Ordenadores
    1203.04 Inteligencia Artificial
    Palabras Clave
    Deep Learning
    Graph Neural Network
    Interaction Network
    Contextual embedding
    Tabular data
    Artificial Intelligence
    ISSN
    0893-6080
    Revisión por pares
    SI
    DOI
    10.1016/j.neunet.2024.106180
    Patrocinador
    Ministerio de Ciencia e Innovación (PID2021-122210OB-I00)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0893608024001047
    Propietario de los Derechos
    © 2024 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/72938
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP24 - Artículos de revista [77]
    Show full item record
    Files in this item
    Nombre:
    neunet173_graph-neural-network-contextual-embedding-deep-learnign-tabular-data.pdf
    Tamaño:
    2.081Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10