• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72951

    Título
    Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading
    Autor
    Romero Oraa, RobertoAutoridad UVA
    Herrero Tudela, María
    López Gálvez, María IsabelAutoridad UVA
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    García Gadañón, MaríaAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computer Methods and Programs in Biomedicine, junio 2024, vol. 249, 108160
    Zusammenfassung
    Background and objective: Early detection and grading of Diabetic Retinopathy (DR) is essential to determine an adequate treatment and prevent severe vision loss. However, the manual analysis of fundus images is time consuming and DR screening programs are challenged by the availability of human graders. Current automatic approaches for DR grading attempt the joint detection of all signs at the same time. However, the classification can be optimized if red lesions and bright lesions are independently processed since the task gets divided and simplified. Furthermore, clinicians would greatly benefit from explainable artificial intelligence (XAI) to support the automatic model predictions, especially when the type of lesion is specified. As a novelty, we propose an end-to-end deep learning framework for automatic DR grading (5 severity degrees) based on separating the attention of the dark structures from the bright structures of the retina. As the main contribution, this approach allowed us to generate independent interpretable attention maps for red lesions, such as microaneurysms and hemorrhages, and bright lesions, such as hard exudates, while using image-level labels only. Methods: Our approach is based on a novel attention mechanism which focuses separately on the dark and the bright structures of the retina by performing a previous image decomposition. This mechanism can be seen as a XAI approach which generates independent attention maps for red lesions and bright lesions. The framework includes an image quality assessment stage and deep learning-related techniques, such as data augmentation, transfer learning and fine-tuning. We used the architecture Xception as a feature extractor and the focal loss function to deal with data imbalance. Results: The Kaggle DR detection dataset was used for method development and validation. The proposed approach achieved 83.7 % accuracy and a Quadratic Weighted Kappa of 0.78 to classify DR among 5 severity degrees, which outperforms several state-of-the-art approaches. Nevertheless, the main result of this work is the generated attention maps, which reveal the pathological regions on the image distinguishing the red lesions and the bright lesions. These maps provide explainability to the model predictions. Conclusions: Our results suggest that our framework is effective to automatically grade DR. The separate attention approach has proven useful for optimizing the classification. On top of that, the obtained attention maps facilitate visual interpretation for clinicians. Therefore, the proposed method could be a diagnostic aid for the early detection and grading of DR.
    Materias Unesco
    3314 Tecnología Medica
    1203.04 Inteligencia Artificial
    Palabras Clave
    Diabetic retinopathy grading
    Fundus images
    Deep learning
    Attention mechanism
    Explainable artificial intelligence
    ISSN
    0169-2607
    Revisión por pares
    SI
    DOI
    10.1016/j.cmpb.2024.108160
    Patrocinador
    Ministerio de Ciencia e Innovación (PID2020-115468RB-I00, TED2021-131913B-I00)
    Universidad de Valladolid (PIF-UVa)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0169260724001561
    Propietario de los Derechos
    © 2024 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/72951
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    cmpb249_attention-based-deep-learning-framework-automatic-fundos-image-processing.pdf
    Tamaño:
    10.22Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10