Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73062
Título
Automatic non-destructive estimation of polyphenol oxidase and peroxidase enzyme activity levels in three bell pepper varieties by Vis/NIR spectroscopy imaging data based on machine learning methods
Autor
Año del Documento
2024
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Chemometrics and Intelligent Laboratory Systems, 2024, vol. 250, 105137
Zusammenfassung
The browning process of food products if often formed upon cutting and damage during their processing, transport, and storage, amongst other potential sources and reasons. Enzymic browning can be mainly due to polyphenol oxidase (PPO) and peroxidase (POD) enzymes. Visible/near-infrared (Vis/NIR) imaging spectroscopy in the range of 350–1150 nm was used in this study for automatic and non-destructive evaluation of PPO and POD activity levels in three bell pepper varieties (red, yellow, orange; N = 30), with a total of 30 inputs samples in each variety. The spectral data were then modeled by the partial least squares regression (PLSR) throughout the whole spectral range, without using any subset of the most effective wavelength (EW) values. Regression determination coefficient (R2) values for the estimation (prediction) of POD enzyme activity levels were 0.794, 0.772, and 0.726 for red, yellow, and orange bell peppers, respectively, all over the validation set. At the same time, the activity levels of PPO enzyme over bell peppers showed R2 values of 0.901, 0.810, and 0.859, for red, yellow, and orange bell peppers, respectively, all over the validation set. In addition, a combination of support vector machine (SVM) with either genetic algorithms (GA), particle swarm optimization (PSO), ant colony optimization (ACO), or imperialistic competitive algorithms (ICA) hybrid machine learning (ML) techniques were used to select the optimal (discriminant) spectral EW wavelength values, and regression performance was consistently improved, to judge from higher regression fit R2 values. Either 14 or 15 EWs were computed and selected in order of their discriminative power using previously mentioned ML techniques. The hybrid SVM-PSO method resulted the best one in the process of selecting the most effective wavelength values (nm). On the other hand, three regression methods comprising PLSR, multiple least regression (MLR), and neural network (NN), were employed to model the SVM-PSO selected EWs. The ratio of performance to deviation (RPD), the R2 and the root mean square error (RMSE), over the test set, for the non-linear NN regression method exhibited better results as compared to the other two regression methods, being closely followed by PLSR, and therefore NN regression method was selected as the best approach for modeling the most effective spectral wavelength values in this study.
Palabras Clave
Effective wavelengths (EW)
Neural network
Non-destructive evaluation
Vis/NIR imaging spectroscopy
Polyphenol oxidase enzyme (PPO)
Peroxidase enzyme (POD)
ISSN
0169-7439
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación/FEDER (PID2021-122210OB-I00)
Version del Editor
Propietario de los Derechos
© 2024 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución-NoComercial 4.0 Internacional