Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73110
Título
A stereoscopic video computer vision system for weed discrimination in rice field under both natural and controlled light conditions by machine learning
Autor
Año del Documento
2024
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Measurement, September 2024, vol. 237, 115072
Résumé
A site-specific weed detection and classification system was implemented with a stereoscopic video camera to reduce the adverse effects of chemical herbicides in rice field. A computer vision and meta-heuristic hybrid NN-ICA classifier were used to accurately discriminate between two weed varieties and rice plants, under either natural light (NLC) or controlled light conditions (CLC). Preprocessing, segmentation, and matching procedures were performed on images coming from either right or left camera channels. Most discriminant features were selected from average, either arithmetic or geometric, images using a NN-PSO algorithm. Accuracy classification results with the stereo computer vision system under NLC were 85.71 % for the arithmetic mean (AM) and 85.63 % for the geometric mean (GM), test set. At the same time, accuracy classification results of the computer vision system under CLC reached 96.95 % for the AM case and 94.74 % for the GM case, being consistently higher than those under NLC.
Palabras Clave
Image processing
Meta-heuristic algorithms neural network (NN)
Optimization
Stereo vision
ISSN
0263-2241
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades (PID2021-122210OB-I00)
Version del Editor
Propietario de los Derechos
© 2024 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Tamaño:
13.54Mo
Formato:
Adobe PDF
![Attribution-NonCommercial-NoDerivatives 4.0 Internacional](/themes/Mirage2//images/creativecommons/cc-by-nc-nd.png)