Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73623
Título
Almost Sectorial Operators in Fractional Superdiffusion Equations
Año del Documento
2024-12-02
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Applied Mathematics & Optimization, February 2025, 91, 2
Resumo
In this paper the resolvent family {Sα,β(t)}t≥0 ⊂ L(X,Y) generated by an almost
sectorial operator A, where α, β > 0, X , Y are complex Banach spaces and its Laplace
transform satisfies Sˆ (z) = zα−β(zα − A)−1 is studied. This family of operators α,β
allows to write the solution to an abstract initial value problem of time fractional type of order 1 < α < 2 as a variation of constants formula. Estimates of the norm ∥Sα,β(t)∥, as well as the continuity and compactness of Sα,β(t), for t > 0, are shown. Moreover, the Hölder regularity of its solutions is also studied.
Materias (normalizadas)
Matemática aplicada
Materias Unesco
1202.15 Ecuaciones Integrales
Palabras Clave
Almost sectorial operators; Fractional differential equations; Resolvent families; Hölder regularity
ISSN
0095-4616
Revisión por pares
SI
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
