• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Medicina, Dermatología y Toxicología
    • DEP52 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Medicina, Dermatología y Toxicología
    • DEP52 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73691

    Título
    Validation of an artificial intelligence-based ultrasound imaging system for quantifying muscle architecture parameters of the rectus femoris in disease-related malnutrition (DRM)
    Autor
    García Herreros, Sergio
    López Gómez, Juan JoséAutoridad UVA
    Cebria, Ángela
    Izaola Jauregui, OlatzAutoridad UVA
    Salvador Coloma, Pablo
    Nozal, Sara
    Cano, Jesús
    Primo Martín, David
    Godoy, Eduardo Jorge
    Luis Román, Daniel Antonio deAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Nutrients, 2024, vol. 16, 1806.
    Resumen
    The aim was to validate an AI-based system compared to the classic method of reading ultrasound images of the rectus femur (RF) muscle in a real cohort of patients with diseaserelated malnutrition. (2) Methods: One hundred adult patients with DRM aged 18 to 85 years were enrolled. The risk of DRM was assessed by the Global Leadership Initiative on Malnutrition (GLIM). The variation, reproducibility, and reliability of measurements for the RF subcutaneous fat thickness (SFT), muscle thickness (MT), and cross-sectional area (CSA), were measured conventionally with the incorporated tools of a portable ultrasound imaging device (method A) and compared with the automated quantification of the ultrasound imaging system (method B). (3) Results: Measurements obtained using method A (i.e., conventionally) and method B (i.e., raw images analyzed by AI), showed similar values with no significant differences in absolute values and coefficients of variation, 58.39–57.68% for SFT, 30.50–28.36% for MT, and 36.50–36.91% for CSA, respectively. The Intraclass Correlation Coefficient (ICC) for reliability and consistency analysis betweenmethods A and B showed correlations of 0.912 and 95% CI [0.872–0.940] for SFT, 0.960 and 95% CI [0.941–0.973] forMT, and 0.995 and 95% CI [0.993–0.997] for CSA; the Bland–Altman Analysis shows that the spread of points is quite uniform around the bias lines with no evidence of strong bias for any variable. (4) Conclusions: The study demonstrated the consistency and reliability of this new automatic system based on machine learning and AI for the quantification of ultrasound imaging of the muscle architecture parameters of the rectus femoris muscle compared with the conventional method of measurement
    Palabras Clave
    artificial intelligence
    disease-related malnutrition
    muscle architecture parameters
    reproducibility
    reliability
    ultrasound imaging
    Revisión por pares
    SI
    DOI
    10.3390/nu16121806
    Version del Editor
    https://www.mdpi.com/2072-6643/16/12/1806
    Propietario de los Derechos
    © 2024 by the authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/73691
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP52 - Artículos de revista [181]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    uvadocVALIDACIONMETODODAWAKOnutrients-16-01806.pdf
    Tamaño:
    3.895Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10