• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74121

    Título
    A machine learning-based test for adult sleep apnoea screening at home using oximetry and airflow
    Autor
    Álvarez González, DanielAutoridad UVA Orcid
    Cerezo Hernández, Ana
    Crespo, Andrea
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Vaquerizo Villar, FernandoAutoridad UVA Orcid
    Barroso García, VerónicaAutoridad UVA Orcid
    Moreno, Fernando
    Arroyo Domingo, Carmen AinhoaAutoridad UVA
    Ruiz Albi, TomásAutoridad UVA
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Campo Matias, Félix delAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    SPRINGER NATURE
    Descripción
    Producción Científica
    Documento Fuente
    Scientific Reports, 2020; vol. 10, p. 5332
    Zusammenfassung
    The most appropriate physiological signals to develop simplified as well as accurate screening tests for obstructive sleep apnoea (OSA) remain unknown. This study aimed at assessing whether joint analysis of at-home oximetry and airflow recordings by means of machine-learning algorithms leads to a significant diagnostic performance increase compared to single-channel approaches. Consecutive patients showing moderate-to-high clinical suspicion of OSA were involved. The apnoea-hypopnoea index (AHI) from unsupervised polysomnography was the gold standard. Oximetry and airflow from at-home polysomnography were parameterised by means of 38 time, frequency, and non-linear variables. Complementarity between both signals was exhaustively inspected via automated feature selection. Regression support vector machines were used to estimate the AHI from single-channel and dual-channel approaches. A total of 239 patients successfully completed at-home polysomnography. The optimum joint model reached 0.93 (95%CI 0.90–0.95) intra-class correlation coefficient between estimated and actual AHI. Overall performance of the dual-channel approach (kappa: 0.71; 4-class accuracy: 81.3%) significantly outperformed individual oximetry (kappa: 0.61; 4-class accuracy: 75.0%) and airflow (kappa: 0.42; 4-class accuracy: 61.5%). According to our findings, oximetry alone was able to reach notably high accuracy, particularly to confirm severe cases of the disease. Nevertheless, oximetry and airflow showed high complementarity leading to a remarkable performance increase compared to single-channel approaches. Consequently, their joint analysis via machine learning enables accurate abbreviated screening of OSA at home.
    ISSN
    2045-2322
    Revisión por pares
    SI
    DOI
    10.1038/s41598-020-62223-4
    Patrocinador
    This work has been partially supported by “Sociedad Española de Neumología y Cirugía Torácica” (SEPAR) under project 66/2016; “Gerencia Regional de Salud de Castilla y León” under project GRS 1472/A/17; “Ministerio de Ciencia Innovación y Universidades” and European Regional Development Fund (FEDER) under project DPI2017-84280-R; and by CIBER-BBN (ISCIII), co-funded with FEDER funds. F. Vaquerizo-Villar was in receipt of a “Ayuda para contratos predoctorales para la Formación de Profesorado Universitario (FPU)” grant from the “Ministerio de Educación, Cultura y Deporte” (FPU16/02938). V. Barroso-García was funded by the grant “Ayuda para financiar la contratación predoctoral de personal investigador” from the “Consejería de Educación de la Junta de Castilla y León” and the European Social Fund.
    Version del Editor
    https://www.nature.com/articles/s41598-020-62223-4
    Propietario de los Derechos
    Álvarez D. et al.
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74121
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    (1)Alvarez-etal_SciRep-2020(OpenAccess).pdf
    Tamaño:
    2.456Mb
    Formato:
    Adobe PDF
    Descripción:
    Published version (Open Access)
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10